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Traditional animal production techniques are usually labour intensive and driven 
by very slim margins. These margins are subject to variables such as meat and milk 
prices, growth rates of animals, governmental policy changes and seasonal changes 
in cereal and crop prices, coupled with the volatile risk of infectious disease resulting 
in livestock losses, increased veterinary inputs and reduced meat prices. However, 
the world population is rapidly increasing; world meat production is predicted to 
double by 2050 (FAO, 2009). As a result, farming techniques are shifting towards 
intensification.

For farmers, time is money, and recording farm data is 
traditionally a cumbersome task that is difficult to do on-
the-go. However, consumers are increasingly demanding 
greater transparency of where their meat comes from, for 
example, the farm-to-fork concept, which has resulted in 
growing impact of farm assurance schemes such as Red 
Tractor, Freedom Food, etc. In addition to customer demand 
for transparency, policies are now changing. For example, 
farmers are now required to document antibiotic use in 
stricter controls in Germany (DART, 2008; USDA, 2011). The 
recent horsemeat scandal in Europe also highlighted the 
lack of traceability in the food chain (European Commission, 
2014), undermining consumer confidence. The increasing 
requirement for transparency and documentation by 
farmers makes farm data management a topical issue.

The rapid expansion of the ‘Internet of Things’ in the last 
decade has made technology integral to daily activities 
and even our culture. The number of sensors shipped has 

increased more than five times from 4.2 billion in 2012 to 
23.6 billion in 2014 (Elfrink, 2014). As a result, farming data 
management practices are also changing with the advent 
of ‘Precision Farming’. The aim of this paper is to explore 
the opportunities and challenges of adapting IoAHT for 
the animal health industry. Furthermore, the authors used 
the DDBM Innovation Blueprint (Brownlow et al., 2015) as 
a practical lens to explore how the ethical use of collected 
data can improve animal health and welfare, improve 
transparency of production processes and construct a 
data-driven business model (DDBM) for precision livestock 
farming (PLF). 

Farming information has traditionally been passed down 
the family generations. However, continually improving 
rural Internet connectivity means that the latest information 
is now readily available online; the Internet is changing 
social trajectories.

For years we have had the ‘Internet’, and the ‘Things’ such 

DATA AND ANALYTICS: 
Internet of Animal Health Things

Figure 1: The Internet of Animal Health Things concept
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as farm animals, machinery and processes. However, only 
recently have these been integrated (see illustration in 
Figure 1). The ‘Internet of Animal Health Things’ not only 
offers the mechanism to make data collection streamlined, 
relevant and accessible, but it also makes data interpretable 
into meaningful information. Farming no longer relies 
on conventional wisdom; sensor-driven automated data 
collection in precision farming allows greater tracking of key 
parameters defining slim profit margins.

As farming systems have intensified, lower fallow ratios 
mean more animals are raised on a smaller amount of 
land with higher labour and capital inputs. With more 
animals per farm, it is increasingly difficult for farmers to 
recognise individual animals due to batching techniques 
with highly automated methods for feeding and care. This 
is coupled with the lack of highly trained stockmen, which 
makes manual integration of observation and coordinated 
action more difficult. PLF utilises advanced technology to 
improve process management against these constraints, 
capturing and recording multiple attributes for each animal, 
for example, age, pedigree, growth rates, health, feed 
conversion rates, meat quality and killing out percentage. 
Consequently, farmers achieve better meat prices by 
slaughtering animals at optimal time points and minimise 
costs by strategic use of drugs and veterinary care. 

While the world population is predicted to reach 9.6 
billion in 2050 (UN, 2013), the World Bank predicts that the 
increases in demand for meat (Figure 2) must be sustained 
by 90 per cent of existing farmland (The World Bank, 2008); 
intensification is inevitable. 

However, this intensification is still not sufficient to meet 
demand; total factor productivity (TFP) growth is not 
accelerating fast enough to meet the necessary agricultural 
output requirements of the future. In 2010 it was calculated 
that global agricultural TFP must grow by an average rate of 
at least 1.75 per cent annually in order to double agricultural 
output through productivity gains by 2050. However, the 

current global agricultural productivity (GAP) index falls 
6 per cent short of the target when compounded over 40 
years (Global Harvest Initiative, 2014). 

Increased ‘precision’ of intensive farming provides an 
opportunity to maximise production efficiency and an 
attempt to mitigate the predicted shortfall in food supply. 
With increasing numbers of animals, data management is 
an ever more pertinent issue. The benefit of sensor-driven 
devices is that the data capture can be automated; it lowers 
bias in data entry and enables the farmer to dedicate time 
to animal care while maximising returns. In other words, 
data management is now both time- and cost-efficient for 
the farmer. But it is not just the farmer that benefits from the 
‘IoAHT’; there are a number of different stakeholders that 
have digital extensions to their products and services.

For veterinarians, the use of sensor devices provides a 
detailed history that could not be obtained in the typical 
consultation. Recovery of animals post-surgery or following 
medication can be measured, enabling quicker follow-up 
where needed, providing a better standard of care as a 
result. Trend data allows vets to make informed decisions 
that enhance conventional practices and experience. The 
communication network facilitated using the device on 
an animal with veterinary interaction promotes increased 
customer retention and client loyalty.

For feed providers and nutritional companies, the use of 
weight estimation devices provides real-time tracking 
of animal growth with a predictive capacity. This allows 
manipulation of feeding regimes in order to reduce 
batch variation and meet the optimum criteria for meat 
production; farmers therefore receive better meat prices at 
the abattoir. Retailers such as Morrison’s are encouraging 
the use of electronic identification device (EID) ear tags to 
replace unreliable slap-marking of carcasses in the pork 
industry (O’Kane, 2015), thus providing better traceability of 
meat products and greater consumer assurance. 

Pharmaceutical companies such as Zoetis use digital app 

The potential benefits of the ‘IoAHT’



extensions to their drug product portfolio to layer relevant 
data sets together to provide transparency into the status of 
an individual animal at any point in time along its lifecycle. 
Regulatory bodies and policy makers will also soon realise 
the benefits of improved data collection, as some European 
countries now require farm-level data and documentation 
on antibiotic use (Maron et al., 2013). In turn, these digital 
technologies are ushering in a new era of best practices 
by enabling farmers and veterinarians to increase clinical 
treatment performance, and improve farm productivity 
and overall animal welfare at the same time.  The IoAHT will 
create a new level of transparency and become a necessity 
in the study of translational medicine and for global 
research initiatives such as ‘One Health’. 

Digital technology, and the transformational societal 
benefits that it promises, have an entirely different research 
and development process to drug technology and present 
a relatively new ‘space’ for pharmaceutical companies. This 
emerging ‘space’ presents new challenges, and not just for 
the pharmaceutical animal health company but rather for all 

stakeholders dependent upon our societal food production 
capabilities.

We carry a societal responsibility to use data in a positive 
way to maximise value to the production chain, while 
protecting the rights of individuals. With the development of 
the IoAHT and the intensification of farming driving the rise 
of PLF, we now have a potential mechanism to support the 
collection of redacted data from individual animals to utilise 
big data for societal benefit. The use of data in isolation 
does not fulfil its potential benefits: greater transparency 
of the food chain, improved traceability, as well as further 
improvements to animal health and welfare. This big data is 
essential when defining governmental policies, identifying 
new population trends and cultural shifts and allocating 
resources efficiently; think of the value of human census 
data, which is personal data used for a societal benefit. We 
have a moral responsibility to use big data effectively to 
oversee animal wellbeing, attempt to mitigate the forecast 
GAP index shortfall and to enhance food security as a result 
of a rapidly growing world population.

GLOBAL DEMAND FOR MEAT
2005 vs 2050
(in tonnes)

2005

2050

64M

106M

13M
25M

100M

143M

82M

181M

62M

102M

BEEF MUTTON PORK POULTRY EGGS

Figure 2: Global demand for meat in 2050 (adapted from FAO, 2012; Gates Notes 2013)
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Data-Driven Business Model of Precision Livestock Farming (PLF)

PLF technologies can be incorporated into the Data-Driven Business Model (DDBM) 
framework, described by Brownlow et al. (2015), see Figure 3. In this section, we 
answer the six fundamental questions for PLF-DDBM innovation:

1. What do we want to achieve by using big data?
2. What is the PLF-DDBM desired offering?
3. What are the key data sources for PLF-DDBM?
4. What are the key activities?
5. What are the potential revenue streams?
6. What are the challenges to us accomplishing our goal?

Figure 3: PLF-DDBM Innovation Blueprint

1  Target Outcome
Using big data to improve the PLF process management 
and  for targeted delivery of drugs to individual animals.

2  O�ering
Data: Continuous sensing of outputs (process 
responses) at appropriate scale and frequency, 
with data fed back to the process controller.

Information: A target value and trajectory for 
each process output such as growth rates, 
behaviour patterns.

Knowledge: Actuators and a predictive 
controller for the process inputs.

Data Erasure
IssuesThird Party

Involvement Issues

Consent Quality 
Issues

User Access and 
Control Issues

Data Collection 
Issues

3  Data Source
Internal: Batch data collected by sensor devices such as herd/flock 
camera systems, automatic weighing devices, vocalisation monitors, 
cough monitors, electronic identification ear tags (EID) and 
pedometers. 

External: Data obtained from collaboration with related parties, for 
example, feed manufacturers working with weight-monitoring PLF 
companies.

4  Key O�ering
Data acquisition: Capturing and recording multiple 
attributes of each animal such as age, pedigree, growth 
rates, etc.

Aggregation: Integrate data from di�erent devices.

Descriptive analytics: Temporal trend analysis, for 
example, monitor animals’ size and weight gain.

Predictive analytics: Predict the estimated real-time 
process output.

Prescriptive analytics: Enable interventions to ensure 
target trajectory is met.

5  Revenue Model
Potential revenue streams include usage 
fees, purchase of sensor devices, 
subscription fees. Data use may support 
other business core products providing 
market insight.



Figure 4: Schematic overview of the key components of PLF to control biological processes, such as animal behaviour, 
physiology and growth (adapted from Wathes et al., 2008)

1. What do we want to achieve by using big data?

‘Big data’ collection by PLF technologies is facilitated by 
continuous, simultaneous measurement of a wide number 
of parameters with analysis of temporal trends – using 
methods of collection without the stress caused by animal 
disturbance or handling (Scott and Moran, 1993; Hamilton 
et al., 2004). The ease of data collection in farming activities 
makes it possible to collect a wider range of data from more 
parameters than ever before regarding animal health, in an 
unbiased and convenient way.

Some sensor-device technologies now allow the ability to 
distinguish between individual animals within traditional 
herd-level batching. Individual differentiation of pigs 
allows closer observation of individual health indicators, for 
example alterations in weight gain, feed and water intake, 
and activity levels could be indicators of disease. Earlier 
identification of health deterioration would allow earlier 
intervention, with quarantine of sick animals to minimise 
the impact of disease spread and timely use of the most 
appropriate drugs.

Sensor devices will vastly improve data collection and 
management methods on farms, which in turn means that 
more ‘big data’ is being collected than ever before. The 
use of ‘big data’ integrating multiple stakeholders along 
the value chain is promising for improving productivity 
and cost-efficiency of animal production, as well as animal 
health and welfare standards

2. What is the PLF-DDBM desired offering?

The first offering is the raw data, which is often collected 
using sensor devices incorporating continuous sensing of 
outputs (process responses) at the appropriate scale and 
frequency, with data fed back to the process controller 
(Wathes et al., 2008). The raw data will need some form of 
basic processing to be interpretable to the farmer, but this 
data in isolation may be beneficial in order to present a 
warning for system failures, such as water supply issues or 
air-conditioning failure. Earlier detection of system failures 
means that the farmer can intervene quicker to solve the 
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problem, before the issue impacts on animal health and 
welfare. Figure 4 shows the basis of PLF for biological 
and physical processes, which can be applied at the pen, 
building or farm level. 

The raw device data can in turn be processed into 
information, enabling us to identify a process output and 
process trajectory such as growth rates and behaviour 
patterns of animals. Predictions of target outcomes allow 
the animal care to be tailored for the optimum result. For 
example, the use of trend data for pig weight can enable 
feed inputs to be tailored to ensure that pigs reach the 
optimum slaughter weight and fat ratio in the required 
time trajectory, resulting in cost-efficient distribution 
of inputs. Farming is an industry that is subject to huge 
variation of inputs and outputs; using big data enables the 
consequences of variation to be mitigated sooner, enabling 
real-time adjustment to meet output targets. This will 
generate knowledge and create a more resistant and stable 
market, which in turn offers consumers greater confidence 
in meat production standards in a competitive price-driven 
industry.

3. What are the key data sources for PLF-DDBM?

IoAHT data collected by PLF data-driven businesses can be 
from internal and external sources. 

Internal data: Data is collected directly from the business 
in question, from its own audience and customers. It is 
highly valuable business data that is free to obtain, and is 
an asset to scale audiences, deepen consumer engagement 
and improve return of investment. Data collected from 
PLF devices is typically internal data, and will include 
temporal data from both animals and owners. The data 
collected by sensor devices may be batch data, such as 
herd and flock camera systems to monitor size and weight 
gain (Schofield, 1990; Whittemore and Schofield, 2000; 
White et al., 2004; Chedad et al., 2003; De Wet et al., 2003), 
automatic weighing devices (Turner et al., 1984; Lokhorst, 

1996), and vocalisation and cough monitors (Van Hirtum 
and Berckmans, 2004; Hemeryck and Berckmans, 2015). 
Individual animal data can also be collected by sensors, 
most commonly in association with electronic identification 
ear tags (EID). Examples include sensors attached to the 
animal such as activity meters for monitoring dairy cow 
oestrus behaviour (Roelofs et al., 2004; Chanvallon et al., 
2014; DeLaval, 2015a), milk yield monitors (de Mol and 
Ouweltjes 2001; Kohler and Kaufmann, 2003; Blom et al., 
2015; DeLaval, 2015b), lameness detectors (Scheel et al., 
2015; Salau et al., 2015) and sensors to measure telemetrics 
such as heart rate and temperature (Mitchell et al., 2004; 
Lowe et al., 2007; Hoffman et al., 2015). This individual 
sensor technology has also begun to be employed in 
companion animals.

External data:  Basically data that is obtained directly 
from a source via a business deal, allowing high-quality 
data sharing with benefit to both parties (Lotame, 
2013). An example in PLF could be the collaboration of a 
weight-monitoring PLF device manufacturer with a feed 
manufacturer, enabling both businesses to share data 
to increase chances of individual success. Another type 
of external data is generated from other platforms and 
is aggregated from other sources, and is often sold data 
accessible through many different avenues. PLF companies 
are typically data companies, so are highly likely to sell 
collected data onwards to other organisations. Customer-
generated data from PLF businesses is usually the most 
significant data source for the individual company; it 
provides customer insight and ensures that potential 
revenue opportunities are not missed. However, the 
integration of external data sources into a data ecosystem 
presents a real opportunity; the use of ‘big data’ integrating 
multiple stakeholders along the value chain is promising 
for improving productivity and cost-efficiency of animal 
production, as well as animal health and welfare standards.



4. What are the key activities?

To develop a complete picture of the key activities for PLF to 
reveal the true value contained within the data, the different 
activities were structured along the steps of the ‘virtual 
value chain’: data acquisition, aggregation, descriptive, 
predictive and prescriptive analytics. The data acquisition 
infrastructure for PLF primarily relies on the use of sensor 
devices. These devices are relatively inexpensive; many 
new devices and systems are rapidly appearing in a similar 
fashion to that of human medicine, for example, wearable 
health-care devices. 

The data collection and processing via IoAHT for a data-
driven business model essentially involves two elements. 
Raw data is discrete data collected by PLF devices and 
apps, which may be geographical, contextual, specific 
and identifiable to the animal that is owned by the farmer. 
The device manufacturers have rights to this data, but it is 
only to be collected and kept for the stated purpose of the 
company that collected it; it cannot be allowed to be re-
purposed for other intentions. This raw data then passes an 
inflection point, where the data is integrated, compiled and 
interpreted to become ‘information’, usually by an algorithm. 
This data processing signals a transition of data rights and 
ownership; the raw data is redacted and the information 
becomes the intellectual property of the data-driven 
business.  

At the moment, many of the devices that make up the 
edge of the industrial Internet of Animal Health Things are 
being implemented without strict data encryption and 
security protocols. As the industry matures so will the use 
of increased data security practices. At the moment, it is 
important that the IoAHT devices collect and store activity 
information and personal identifiable information (PII) in 
separate ways that cannot be misused. It is recommended 
that the activity data of the animal should be stored in 
a physically segregated manner, isolated from the PII 
information on the pet owner, farmer or vet involved with 
the activity, in order to protect the privacy of all parties and 

to be compliant with the EU and US data privacy rules.  

The key activity of PLF businesses is data insight using 
analytics, which may be descriptive, predictive and/or 
prescriptive. One of the main benefits of PLF is being able 
to use prescriptive analytics to inform decision making, and 
to measure the impact of a prescriptive intervention on 
the forecast trajectory from predictive analytics. Predictive 
analytics is considered the predicted trajectory calculated 
based on the descriptive analytics from the past, without 
an intervention. This then allows interventions to be used 
where it is cost-efficient or there is a benefit to animal health 
and welfare. For example, growth rates of pig batches over a 
time period can be predicted based on the descriptive data 
coupled with nutritional information from a feeding regime. 
The deviation from the optimum growth trajectory can then 
be measured in real time, allowing an intervention in the 
feeding regime to allow pigs to reach slaughter-weight on 
target. In a similar way, the health status of animals can also 
be monitored by movement cameras, allowing targeted 
use of medicine dosing where required in a prescriptive 
intervention.

5. What are the potential revenue streams?

Some companies use ‘big data’ driven by PLF devices as 
value proposition to support their traditional revenue 
streams. For example, pharmaceutical company Zoetis 
invests in the Individual Pig Care programme (Pineiro et 
al., 2014), which is a PLF data-management system that 
essentially supports the core products of the company, 
improves animal health and welfare and promotes customer 
retention and loyalty. Newer start-up firms may rely almost 
entirely on data as their business offering, in the absence 
of an existing revenue stream. In order for data-driven 
PLF businesses to have a quantifiable benefit, a revenue 
model is crucial. Hartman et al. (2014) describes the seven 
main business revenue streams as: advertising, usage fees, 
subscription fees, brokerage fees, licensing fees, leasing fees 
and asset sales.
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PLF businesses primarily rely on usage fees for their services, 
alongside purchase of sensor PLF devices. In the example 
of Zoetis, the Individual Pig Care programme has a revenue 
model consisting of survey usage fees for collecting 
information in the pens where the pigs are housed. The 
use of the system also supports the core products of the 
company, and provides further customer insight.

6. What are the challenges to us accomplishing our 
goal as an industry?

As a result of the inclusive nature of IoAHT, which 
incorporates ‘everything’, there are a number of challenges 
requiring appropriate oversight.

IoAHT data-collection methods are invasive, innocuous 
and unstructured. The seamless and frictionless nature of 
integration of devices into core user activities obscures the 
commitment and consequences of the data collection. In 
practice, it is unreasonable to assume that users of animal 
health applications that draw data actually understand 
the various entities participating in support of any data-
collecting experience. Nor should it be expected that users 
understand the various places where their data resides and 
who could have access to it, especially after time passes. 
In the meantime, we need to ensure data is collected in a 
responsible manner with benefits to stakeholders in the 
value chain. It is of paramount importance therefore to set 
an industry standard for responsible storage and use of 
data, where unregulated use could result in triangulation 
of different data sets, which would infringe personal data 
rights. 

User access and control over data is limited, allowing 
data recourse for different purposes. Animal data is a very 
different entity to human data; the animal is considered 
a ‘Thing’ in an industrial process where data laws are 
concerned, similar to other ‘Things’ where data is collected, 

such as light bulbs, windmills and other objects that are IoT 
devices. As a result, usage regulation is lacking, while a large 
amount of data is already being collected by IoAHT devices. 
This is less critical where the data is commoditised data, but 
where data collection is moving towards to medical data 
and prescription data, it is of paramount importance that 
this data cannot be exploited to the detriment of the IoAHT 
device owner.  

Consent mechanisms used for user privacy approval of the 
IoT in general are often of low quality, making it hard for 
the user to understand what exactly they are consenting to. 
With the rapid expansion of the IoT and the rise of human 
wearable devices, updates have been made to human data 
laws in Europe (Rotenberg et al., 2013) and the US (The 
White House, 2012). Yet there has been recent publicity over 
concerns about data management for human wearable 
devices. A recent report showed 82 per cent of respondents 
are worried that wearable technology would invade their 
privacy (PWC, 2014). In a different study, 91 per cent of 
people felt that consumers had lost control of personal data 
(Pew Research Centre, 2014). Although animals do not have 
any privacy rights to their data, data protection laws exist to 
protect personal identifiable information (PII) collected with 
animal data. A critical problem is that human inference can 
be obtained from IoAHT data. For example, a companion 
animal activity tracking device that records dog walks could 
theoretically record where the owner lives, and owner 
activity levels and habits. It is the combination of this animal 
activity with the dimension of human activity information 
that requires special attention to ensure best practices are 
employed to restrict the use of PII in the IoAHT context. 

The ‘right to be forgotten’ rule (Mantelero, 2013) needs to 
be enforced, enabling customer data to be deleted when 
requested by a member of the public, including data passed 
onto third parties. This is a very pertinent issue for PLF data 
collection with draft revision of EU policies calling for a fine 
of up to 1 per cent of annual turnover for firms that fail to 



Conclusion
Can the industry afford to wait to have data laws put in place by authorities, which could hinder societal benefit from 
big data in animal food production by limiting the wealth of information about animal health and welfare being 
offered by these IoAHT devices?

Instead, could the Animal Health industry proactively:

•	 Create a responsible model to meet the dual needs of privacy and on-demand personal data redaction? 

•	 Integrate privacy and redaction models in a manner that can achieve the promise of improved animal medical 
outcomes that drive precision farming?

•	 Standardise technology infrastructure and practices to ensure proper data privacy, security and management, 
while enabling the wider benefits of increased transparency and information sharing along the value chain? 

•	 Work together to ensure data practices are trusted by users and society as a whole, and set the standard for the 
responsible use of data?

‘erase personal data in violation of the right to erasure and 
“right to be forgotten”’ (Reuters, 2015).  PLF businesses need 
to consider carefully the type of data that their business is 
using, and ensure that data is deleted from sensor devices 
and related data-processing software. 

Third party involvement is not identified by IoAHT 
applications, nor all of the places where raw and compiled 
data will reside. Animal health policies are changing; for 
example, German animal health policies now place great 
emphasis on data collection by farmers regarding the use 
of heavily restricted antibiotics (USDA, 2011); farmers may 
be reluctant to share data if they feel they may be penalised 
by government authorities. In the animal health context, 
does this mean governments should have access to farmers’ 
individual veterinary data collected by herd management 
apps? It is important that users of IoAHT devices feel 
protected by data privacy laws. 

To meet our goals, industry needs to be forward thinking 
for data-driven business models and establish a holistic 
data ecosystem that can fulfil its potential by overcoming 

a number of challenges. Zoetis is one of the companies 
working at the forefront of some of these critical challenges 
to shape the animal health industry in this area, ensuring 
the effective and intelligent use of big data for societal 
benefits with the appropriate level of privacy in a more 
systemic manner.

We believe that the use of ‘big data’ generated from PLF 
systems offers the ability to address a number of challenges 
currently facing the animal health industry. Whilst the 
intensification of farming can result in compromised 
animal health and welfare due to increased stocking 
densities of animals, the use of PLF sensor devices can 
help identify and mitigate these compromises sooner, 
resulting in improved health and welfare standards. 
Also, the recent European horsemeat scandal (European 
Commission, 2014) highlighted the flaws in traceability 
of the food production industry undermining consumer 
confidence, and the distrust in global organisations such 
as Monsanto (Monsanto, 2014; March-Against-Monsanto, 
2015) demonstrates the need for greater transparency in 
the value chain.
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