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Abstract  
Extant research shows that meaningful information about social interactions 
can be gained by studying ‘honest signals’. Honest signals represent aspects 
of communication not captured directly by content semantics, but rather by 
factors such as body language and proxemics. In this regard, research 
employing wearable technology such as the sociometric badge developed 
by the MIT Media Lab has proven to be particularly useful for analyzing the 
interactions of humans in work environments. Such research has tended to 
take a dyadic or network perspective. However, in this study, inspired by 
human activity recognition research, we investigate the possibility of 
identifying employees and differentiating their group-functions based on 
behavior, with particular emphasis on identifying those in positions of 
leadership. Working with a high-resolution dataset collected using 
sociometric badges deployed during small team meetings in a European 
financial services firm, and applying multi-class classification, we reveal that 
individual accelerometer-derived posture movement (left-right and front-
back) and speaking volume (from a microphone located closest to a focal 
participant, thus also capturing information pertaining to posture) are 
particularly strong features for identification. Across all models, we achieve 
an average of 73% accuracy, with reasonably balanced precision and recall 
across individuals. 

 
Introduction  
Wearable technology (WT) encompasses worn devices that collect information about a 
user, and / or relay and display information to that user. WT research overlaps with Human 
Activity Recognition (HAR) research, employing individual-level analysis based on machine 
learning classification and signal processing for human activity pattern recognition 
[1,2,3,4,5], or group-level analysis based on methodologies such as social signal processing 
and network analysis [6,7,8,9,10,11]. The latter is particularly complimentary to the domain 
of workforce analytics and wearable-enabled organizational behavior research 
[12,13,14,15] and the study of social dynamics within organizations more broadly [16,17]. 
However, one notable opportunity at the intersection of these perspectives is to leverage 
what is known about approximation using data from wearable devices at an individual 
level, and to transfer this approach into workforce analytics as a basis for developing 
approaches to machine learning-based employee identification. One area of application 
for such an approach is in the identification of leaders, a fundamental scenario in 
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management and organizational science [18,19]. This also more broadly encompasses 
leadership style [20] and leadership performance outcomes [21]. 
 
As with the identification of any socio-interactive process, this idea builds around the 
innate human ability to ‘read’ one another, using ‘honest signals’ [22], dimensions of 
communication not captured directly by content semantics, but rather by factors such as 
body language and proxemics. Such social signals are able to capture attention, 
agreement and disagreement [23]. Among these, posture is a particularly interesting 
dimension; generally assumed relatively unconsciously, and able to capture exclusion or 
inclusion (i.e. facing toward or away from someone), engagement style (i.e. more face-to-
face versus standing parallel), non-congruence versus congruence (where individuals more 
satisfied with an interaction also exhibit matching postures), and overall rapport [23]. Thus, 
our study addresses the following research question: can those in contextually defined 
leadership roles within teams be accurately identified using postural data? More 
specifically, this involves examining the role of posture as a social signal of hierarchical 
status, given a context where such positions are afforded to individuals. This is to treat 
posture not as a constant; a manifestation of a particular character or personality trait, but 
rather to examine posture as a function of social context.  
 
To this end, we employ a small-scale field study format, which took place within the 
innovation department of a European financial services company. For this, employees 
were issued to wear sociometric badges during weekly team meetings [24]. Each 
sociometric badge is uniquely identified, serving as a class label for multi-class 
classification.  
 
Human Activity Recognition  
Human Activity Recognition (HAR) refers to the automatic detection of physical activities (e.g. 
sitting, lying, walking) by analyzing signals from wearable and ambient sensors [25,26]. Broadly 
speaking, two classes of HAR exist: wearable sensor-based HAR systems, using combinations of 
MEMS (micro-electrical mechanical systems) sensors and other sensors such as Bluetooth and 
infrared proximity sensors, and systems working with external sensors such as video recorders, 
cameras, and pressure sensors [27,28,29]. There are three main advantages in using wearable 
devices for social science research. Firstly, wearable HAR systems are less expensive, less 
computationally intensive, and less cumbersome. Secondly, these systems can be used in a 
relatively non-invasive manner, what makes them appropriate for a range of deployments in 
'natural’ settings [30,31]. Thirdly, participant acceptance is aided by the ubiquitous nature of 
wearable devices and portable electronics such as smartphones and consumer wearable 
technology [32,29]. Importantly, activity recognition systems have also gained traction in the 
consumer market. Various domains, such as healthcare, surveillance systems, sports coaching, 
fitness assessment, and smart homes involve HAR [33,29]. In academic research, two well-
known applications of HAR are fall detection systems (i.e. for elderly care) [2], using threshold 
based methods and signal processing [34,1] and sports performance [35]. Mozos et al. [36] 
work towards a similar direction with a focus on measuring physiological markers of stress. 
 
Broadening the HAR domain, the sociometric badge, or sociometer [24] is an example of a 
wearable HAR device which can gather complex data about social settings and the individual 
people within them. The device is capable of tracking and analyzing social signals via different 
sensors: a microphone picks up speech characteristics (e.g. tone of voice), an accelerometer 
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detects body movement and posture, and infrared and Bluetooth sensors measure 
interpersonal distances [13]. Across a number of studies, researchers have found that 
behavioral outcomes in situations such as business plan contests [37], salary negotiations [38] 
or dating [39] can be accurately predicted by analyzing quantitative data from the sociometer. 
More recently, researchers have used the devices to study contagion in social networks [40] 
and social network diversity [41]. With HAR proving to be a useful approach to workforce and 
workplace analytics, Montanari, Nawaz, Mascolo, and Sailer [14] and Montanari, Nawaz, 
Mascolo, and Sailer [15] have also explored the use of Bluetooth-based wearable 
technology for human proximity measurement in this context. In the HAR domain, 
posture-related variables are particularly interesting, having been studied from a health 
perspective [42] as well as from a social science point of view, with posture seen as an 
important marker of social engagement [43], among other aforementioned social 
processes and outcomes. Posture has also been long recognized as a means of conveying 
and establishing dominance [44], a necessary ingredient for contextually defined 
leadership. 
 
Materials and Methods 
The focus of this study is on a small team within a large organization. The study was 
conducted by following four consecutive, equally structured meetings within the 
innovation department of a European financial services company. The sample comprised 
13 subjects; 12 employees working and 1 independent researcher. Notably, the sample 
size between meetings varied throughout the field study due to distinct office locations 
and work-related travel, although six to ten subjects participated weekly. In terms of job 
roles, the division is broadly distributed into three, small functional teams comprising four, 
five, and two workers, respectively. The head of innovation (PID_1) overseas each work 
group and one peripheral manager (PID_2) gives a single team technological advice. 
Within the distinct teams, each employee performs a specific function. The specific job 
titles were Trainee, Architect, Project Officer, Senior Coach, General Manager, Innovation 
Manager and Head of Innovation. 
 
The duration of the meeting ranged between 48 minutes in the first meeting to 23 minutes 
in the last meeting. Importantly, the participants were given a choice of where and with 
whom to sit. Participants had a choice between multi-tiered benches, office chairs, or 
standing positions. Before the study started, every employee signed a consent form to 
participate which informed the employees about the purpose of the study, the 
confidentiality of the data, and the opportunity to withdraw from the research project at 
any time. None of the participants requested to discontinue their participation or withdraw 
their consent. The participants also later confirmed that wearing the badges had been 
non-obtrusive and did not affect their social interaction behavior during the meetings. 
Data Collection and Pre-processing 
The variables used for feature selection collected from the sociometric badges are shown 
in Table 1. Each sociometric badge is uniquely identified, serving as class labels for multi-
class classification. In each of the four meetings, employees present were equipped with 
sociometers for the duration of the meeting. In total 69290 seconds (1155 minutes) of data 
were collected, resulting in an average of almost 90 minutes per participant. 
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Table 1. Description of Variables.  
Table Notes: This table shows all variables (features) used for feature selection. 

Feature Description 
BM_activity Body movement activity captured by accelerometer 
Posture_left-right Posture: left-right direction 
Posture_front-back Posture: front-back direction 
Posture_activity Absolute angular velocity of posture 
Speech_profile_speaking Amount of seconds someone spent speaking, while no one else was speaking 
Speech_profile_overlap Amount of seconds someone spent speaking, while someone else was 

speaking 
Speech_profile_listening Amount of seconds someone was being silent, while someone else was 

speaking 
Speech_profile_silent Amount of seconds someone was being silent, while everyone else was silent 

too 
Audio_back_volume Average volume (proportional to decibel) recorded by back microphone 
Audio_back_pitch Voice pitch (in Hz) 

 

We extract this data, and then treated each row marked by a different timestamp as a 
separate instance, resulting in 69290 instances for classification of the 13 employees (Table 
2). This was done to maximize the available information for classification, given the 
limitations of the relatively small dataset. Hence, time was not used formally as in time 
series analysis, but as a basis to create multiple training examples. At the same time, by 
using a one-second resolution, many instances were generated and the variance of each 
attribute was maximized. This also allows us to assess the validity of a very computationally 
simple and efficient approach versus formal signal processing techniques for example.  
 
Due to the fact that the attributes are measured on different scales, each input feature was 
also standardized to be Gaussian distributed before feature selection and classification. 
The z-scores are obtained by subtracting the population mean from each attribute value 
and dividing the result by the attributes’ standard deviation. Standardizing provided an 
equally scaled set of attributes with a mean of zero and standard deviation of one [45].  
 

Table 2. Number of Instances per Participant.  
Table Notes: This table shows the number of instances each participant contributed to the classification 
problem across the different meetings. Non-attendant participants are represented by grayed out entries. In 
total 69290 seconds (1155 minutes) were used to classify the individuals. PID = Participant ID (anonymized 
participant identifier). M1, M2, M3, M4 denote Meetings 1 to 4. 
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PID M1 M2 M3 M4 Total 

PID_1 2759   2004   4763 

PID_2 2759 1772 2004   6535 

PID_3   1772   1258 3030 

PID_4 2759 1772   1258 5789 

PID_5 2759 1772 2004   6535 

PID_6 2759 1772   1258 5789 

PID_7     2004   2004 

PID_8   1772 2004 1258 5034 

PID_9 2759 1366 2004   6129 

PID_10 2759   2004 1258 6021 

PID_11 1579 1772 2004   5355 

PID_12 2759 1772     4531 

PID_13 2759 1772 2004 1240 7775 

Total 26410 17314 18036 7530 69290 

  
A visual inspection of the raw data revealed interesting patterns between participants and 
meetings Figures 1 and 2 are stream plots showing posture left-right and posture front-
back features for selected participants, normalized 1-0. The total area (all colors) in this plot 
shows the total motion recorded at timestamp t (i.e. for each instance) across four 
channels (Posture Left-Right and Posture Front-Back). Each section (color) represents the 
relative contribution of that variable to the total motion recorded. For illustration, Figure 1 
shows PID_1 and PID_2 (the two most senior members among the participants) in the 
third meeting. Figure 2 shows PID_2 with PID_8 (a subordinate manager) in the third 
meeting. 
 

Figure 1: Posture Features for PID_1 and PID_2 in Meeting 3 

 
 

Figure 2: Posture Features for PID_2 and PID_8 in Meeting 3 
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Multi-class Classification 
Classification employed the WEKA machine learning library, using the REP TreeA, NB TreeB 
and Random ForestC (with consensus from ten trees) classifiers. The classifiers were run as a 
one-versus-all multi-class classifiersD. The three chosen classifiers were used within a 
forward-feature selection loop, within which a 10-fold cross-validation loop was also used. 
The algorithm starts by training the classifier based on one feature only. Then the most 
relevant features are continuously added and the classifier is trained again on the new 
feature subset. This process is iterated until the classifier reaches its maximal accuracy [46]. 
The same classifiers were then re-run using the features which produced the highest 
accuracy scores in the forward-feature selection exercise, also within a 10-fold cross-
validation loop. Because of the design of the study and the focus on identification of 
individuals, classes were mostly well-balanced (except for instances where participants left 
meetings early for example). For refinement in future work, class-balancing could be 
performed using an oversampling technique such as SMOTE [47]. 
 
A. WEKA REP Tree: http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html 
B. WEKA NB Tree: http://weka.sourceforge.net/doc.packages/naiveBayesTree/weka/classifiers/trees/NBTree.html 
C. WEKA Random Forest: http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html 
D. WEKA Multiclass: http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/MultiClassClassifier.html 

 
Results  
Feature Selection – Natural Classes 
The results for the forward feature selection procedure for the natural class data are shown 
in Table 3. In particular, we were interested in assessing the relative roles of the postural 
(left-right and front-back) features, as well as the Audio_back_volume feature, the latter 
also capturing important information about posture.  The optimal number of features 
ranged between six and nine features, with six being optimal only once in the case of 
Meeting 3 using NB Tree. Notably, in none of the twelve cases all available features were 
used to build the model, hence feature selection fulfilled its function to narrow the 
dimensionality of the problem as much as possible. The Random Forest classifier achieved 
the best results among the three classifiers used for feature selection. 
 
The procedure resulted in a sharp increase in accuracy across the first three features for 
each model and each meeting, followed by a relative plateauing of accuracy scores 
thereafter. In eleven of twelve models, the same postural features accounted for the 
majority of predictive power. The feature subset which accounted for the sharp increase of 
accuracy consisted of the features Posture_front-back, Posture_left-right and 
Audio_back_volume. Almost half of the accuracy (49%) was explained by Posture_front-
back, while Posture_left-right accounted for 37% of prediction ability on average. 
Additionally, Audio_back_volume contributed 7% on average. Importantly, 
Audio_back_volume can be considered something of an “audio posture” feature, since it is 
related both to how a participant sits (i.e. sitting up straight should increase the volume), 
as well as to overall posture tension/tone (i.e. when a participant holds their posture 
energetically, it is likely that their voice will project more, and be recorded louder). 
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Table 3: Feature Selection for Natural Classes 
Table Notes: Gray= Highest overall accuracy achieved. Light blue= Postural features. 

 
REP Tree NB Tree Random Forest 

 
Features Accuracy Change Added feature Features Accuracy Change Added feature Features Accuracy Change Added feature 

M1 

10 64.40% -0.30% Speech_profile_listening 10 63.00% -0.30% Audio_back_pitch 10 68.40% -0.60% Speech_profile_silent 

9 64.70% 0.00% Speech_profile_overlap 9 63.30% -1.10% Speech_profile_listening 9 69.00% 0.20% BM_activity 

8 64.70% -0.10% BM_activity 8 64.40% 0.20% Speech_profile_overlap 8 68.80% 0.30% Audio_back_pitch 

7 64.80% 0.00% Audio_back_pitch 7 64.20% 0.40% Speech_profile_speaking 7 68.50% 0.50% Speech_profile_overlap 

6 64.80% 0.90% Speech_profile_speaking 6 63.80% 0.50% BM_activity 6 68.00% 1.10% Speech_profile_speaking 

5 63.90% 0.20% Speech_profile_silent 5 63.30% 1.00% Speech_profile_silent 5 66.90% 0.90% Speech_profile_listening 

4 63.70% 1.30% Posture_activity 4 62.30% 1.50% Posture_activity 4 66.00% 2.70% Posture_activity 

3 62.40% 2.00% Audio_back_volume 3 60.80% 2.10% Audio_back_volume 3 63.30% 4.80% Audio_back_volume 

2 60.40% 16.90% Posture_left-right 2 58.70% 14.20% Posture_left-right 2 58.50% 23.80% Posture_left-right 

1 43.50% 43.50% Posture_front-back 1 44.50% 44.50% Posture_front-back 1 34.70% 34.70% Posture_front-back 

M2 

10 62.50% -0.40% Speech_profile_overlap 10 59.60% -1.00% Audio_back_pitch 10 67.30% -0.70% Speech_profile_overlap 

9 62.90% 0.30% Speech_profile_speaking 9 60.60% 0.10% Speech_profile_silent 9 68.00% -0.40% BM_activity 

8 62.60% -0.20% Posture_activity 8 60.50% 0.00% Speech_profile_speaking 8 68.40% 0.30% Speech_profile_speaking 

7 62.80% 0.20% BM_activity 7 60.50% 0.20% Speech_profile_overlap 7 68.10% 0.40% Audio_back_pitch 

6 62.60% -0.10% Audio_back_pitch 6 60.30% 0.70% Posture_activity 6 67.70% 0.60% Speech_profile_silent 

5 62.70% 0.70% Speech_profile_silent 5 59.60% 1.90% Speech_profile_listening 5 67.10% 2.40% Posture_activity 

4 62.00% 1.90% Speech_profile_listening 4 57.70% 1.30% Audio_back_volume 4 64.70% 2.80% Speech_profile_listening 

3 60.10% 3.10% Audio_back_volume 3 56.40% 1.80% BM_activity 3 61.90% 6.70% Audio_back_volume 

2 57.00% 21.70% Posture_left-right 2 54.60% 17.60% Posture_left-right 2 55.20% 28.10% Posture_left-right 

1 35.30% 35.30% Posture_front-back 1 37.00% 37.00% Posture_front-back 1 27.10% 27.10% Posture_front-back 

M3 

10 74.10% -0.70% BM_activity 10 73.10% -0.30% Audio_back_pitch 10 78.50% -0.40% BM_activity 

9 74.80% 0.20% Speech_profile_listening 9 73.40% -0.20% Posture_activity 9 78.90% -0.10% Speech_profile_overlap 

8 74.60% 0.20% Audio_back_pitch 8 73.60% 0.10% Speech_profile_speaking 8 79.00% 0.10% Speech_profile_listening 

7 74.40% 0.00% Speech_profile_speaking 7 73.50% -0.10% Speech_profile_overlap 7 78.90% 0.80% Audio_back_pitch 

6 74.40% 0.00% Speech_profile_overlap 6 73.60% 0.10% BM_activity 6 78.10% 0.40% Speech_profile_speaking 

5 74.40% 0.40% Posture_activity 5 73.50% 1.00% Speech_profile_silent 5 77.70% 0.90% Posture_activity 

4 74.00% 1.60% Speech_profile_silent 4 72.50% 1.70% Speech_profile_listening 4 76.80% 2.80% Speech_profile_silent 

3 72.40% 3.20% Audio_back_volume 3 70.80% 2.20% Audio_back_volume 3 74.00% 6.50% Audio_back_volume 

2 69.20% 26.90% Posture_left-right 2 68.60% 25.00% Posture_left-right 2 67.50% 34.20% Posture_left-right 

1 42.30% 42.30% Posture_front-back 1 43.60% 43.60% Posture_front-back 1 33.30% 33.30% Posture_front-back 

M4 

10 85.30% -0.10% BM_activity 10 85.40% -0.40% Speech_profile_overlap 10 87.30% -0.70% BM_activity 

9 85.40% -0.10% Audio_back_pitch 9 85.80% 0.40% Audio_back_pitch 9 88.00% -0.40% Speech_profile_overlap 

8 85.50% -0.40% Speech_profile_overlap 8 85.40% 0.00% Speech_profile_silent 8 88.40% 0.30% Speech_profile_speaking 

7 85.90% 0.20% Speech_profile_silent 7 85.40% 0.10% BM_activity 7 88.10% 0.00% Speech_profile_silent 

6 85.70% 0.20% Posture_activity 6 85.30% 0.00% Speech_profile_speaking 6 88.10% 0.20% Audio_back_pitch 

5 85.50% 0.00% Speech_profile_listening 5 85.30% 0.50% Speech_profile_listening 5 87.90% 0.70% Speech_profile_listening 

4 85.50% 0.60% Speech_profile_speaking 4 84.80% 0.60% Posture_activity 4 87.20% 1.10% Posture_activity 

3 84.90% 2.50% Audio_back_volume 3 84.20% 3.10% Audio_back_volume 3 86.10% 3.90% Audio_back_volume 

2 82.40% 16.30% Posture_left-right 2 81.10% 13.90% Posture_left-right 2 82.20% 24.60% Posture_left-right 

1 66.10% 66.10% Posture_front-back 1 67.20% 67.20% Posture_front-back 1 57.60% 57.60% Posture_front-back 

 
A “good” feature here is characterized by its robustness across different individuals [30]. 
Hence, features are desirable which clearly differentiate the classes. The results gained 
from feature extraction are consistent with the honest signals argumentation [11]. Activity 
is an energy-based honest signal manifesting itself in social behaviors such as posture, 
body movement or tone of voice. It expresses each individual’s interests as well as their 
role in the social hierarchy [9]. For instance, Mast [48] showed that the individual 
dominance manifests itself in the amount of speaking time.  
 
BM_activity was not a good identifying variable in this case since the employees were 
mostly stationary and did not move around. Audio_back_pitch performed far less well than 
expected. Research, for instance, has shown the associations between vocalic cues such as 
pitch, tempo or loudness and attributions of persuasiveness or dominance [49]. Also social 
scientists found that the deviation in voice pitch is significantly correlated with 
physiological stress [50]. Yet, Audio_back_pitch did not reach the prediction ability of the 
amplitude-based vocalic cue Audio_back_volume.  
 
Likewise, the feature speech_profile_overlap had a negligible effect on the classification 
outcome. This might be due to the structured character of the meeting. Throughout the 
meeting, the participants were involved in a single conversation and most of the time only 
one employee spoke while the others were listening. Hence, the speech profiles of the 
non-contributing employees closely resembled each other. Another reason relates to the 
statistical independence of the speech profile features. For instance, the events 
Speech_profile_speaking and Speech_profile_listening are mutually dependent. Features 
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showing similar trends are likely to carry similar information. Classifiers are sensitive to 
correlating features and since features that carry similar information will not improve the 
model performance, they are also less likely to be isolated during feature selection. 
Moreover, the speech profile features are time-based measures (second-by-second) 
causing high intra-class variability.  
 
Multi-class Classification – Natural Classes 

The multi-class classification results for the natural class data are summarized in Table 4. 
Identification results were best for Meeting 4, followed by Meeting 3, Meeting 1 and 
Meeting 2. The sample size varied as follows: Across the four meetings, the least 
employees (6) participated in Meeting 4, whereas nine employees were part of the study in 
Meeting 3. Yet, the largest sample size was recorded for Meeting 1 and Meeting 2 in which 
ten employees participated. In proposing a probabilistic argument, the likelihood that the 
algorithm correctly classified the instance is higher, where fewer classes exist. This is could 
be because mimicry, a sign of empathic understanding leading individuals to mirror 
certain behaviors of others [11], has more potential opportunities to manifest, thus 
confusing intra-class identification.  
 
The occurrence and effect of influence and mimicry are certainly contingent on the 
number of people in a network. Thus, the effects have been the smallest during Meeting 4 
which is supported by the researcher’s perception of mentally focused employees during 
that meeting. This suggests that the classification approach works best, meaning that the 
social signature of each individual is most clearly established when an individual behaves 
actively, signals social behaviors in a consistent manner, is less susceptible to external 
influences, and does not mimic behaviors of others.  
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Table 4: Multi-class Classification Results for Natural Classes 

 

  Recall Precision F-
measure 

Recall Precision F-
measure 

Recall Precision F-
measure 

M1 

REP Tree (64.20%) NB Tree (64.20%) Random Forest (68.90%) 

PID_1 0.948 0.956 0.952 0.944 0.955 0.95 0.959 0.973 0.966 

PID_2 0.674 0.676 0.675 0.664 0.655 0.659 0.74 0.688 0.713 

PID_4 0.68 0.614 0.645 0.679 0.618 0.647 0.704 0.658 0.68 

PID_5 0.422 0.409 0.415 0.399 0.395 0.397 0.444 0.496 0.469 

PID_6 0.522 0.581 0.55 0.522 0.584 0.551 0.594 0.629 0.611 

PID_9 0.632 0.536 0.58 0.657 0.549 0.598 0.681 0.6 0.638 

PID_10 0.604 0.655 0.629 0.613 0.644 0.628 0.693 0.693 0.693 

PID_11 0.859 0.839 0.849 0.855 0.847 0.851 0.874 0.872 0.873 

PID_12 0.736 0.765 0.75 0.73 0.766 0.747 0.762 0.778 0.77 

PID_13 0.437 0.486 0.46 0.447 0.502 0.473 0.515 0.564 0.538 

M2 

REP Tree (62.50%) NB Tree (60.30%) Random Forest (67.90%) 

PID_2 0.585 0.568 0.576 0.523 0.559 0.54 0.662 0.623 0.642 

PID_3 0.551 0.683 0.61 0.432 0.701 0.535 0.616 0.747 0.675 

PID_4 0.72 0.675 0.696 0.712 0.669 0.689 0.761 0.722 0.741 

PID_5 0.605 0.64 0.622 0.595 0.64 0.617 0.656 0.698 0.677 

PID_6 0.655 0.761 0.704 0.676 0.692 0.684 0.715 0.8 0.755 

PID_8 0.573 0.545 0.558 0.564 0.52 0.541 0.609 0.614 0.612 

PID_9 0.638 0.595 0.616 0.626 0.593 0.609 0.667 0.614 0.64 

PID_11 0.688 0.702 0.695 0.694 0.604 0.646 0.715 0.75 0.732 

PID_12 0.657 0.558 0.603 0.657 0.548 0.598 0.705 0.627 0.664 

PID_13 0.581 0.566 0.574 0.554 0.554 0.554 0.682 0.625 0.652 

M3 

REP Tree (74.70%) NB Tree (73.20%) Random Forest (78.80%) 

PID_1 0.838 0.846 0.842 0.852 0.818 0.834 0.886 0.874 0.88 

PID_2 0.648 0.638 0.643 0.605 0.559 0.581 0.701 0.704 0.702 

PID_5 0.652 0.716 0.683 0.649 0.739 0.691 0.713 0.769 0.74 

PID_7 0.603 0.655 0.628 0.548 0.62 0.582 0.668 0.726 0.696 

PID_8 0.753 0.728 0.741 0.727 0.721 0.724 0.789 0.773 0.781 

PID_9 0.821 0.767 0.793 0.824 0.743 0.782 0.863 0.781 0.82 

PID_10 0.757 0.696 0.725 0.737 0.713 0.724 0.791 0.734 0.762 

PID_11 0.873 0.889 0.881 0.863 0.913 0.888 0.876 0.923 0.899 

PID_13 0.778 0.788 0.783 0.782 0.768 0.775 0.807 0.815 0.811 

M4 

REP Tree (85.20%) NB Tree (85.30%) Random Forest (88.20%) 

PID_3 0.824 0.836 0.83 0.821 0.839 0.83 0.875 0.877 0.876 

PID_4 0.855 0.767 0.809 0.846 0.777 0.81 0.862 0.813 0.836 

PID_6 0.984 0.974 0.979 0.981 0.977 0.979 0.987 0.988 0.988 

PID_8 0.678 0.73 0.703 0.696 0.723 0.71 0.742 0.773 0.758 

PID_10 0.935 0.947 0.941 0.936 0.942 0.939 0.955 0.956 0.956 

PID_13 0.837 0.86 0.848 0.84 0.864 0.852 0.868 0.883 0.875 

 
Overall, in Meeting 1, accuracy amounted to 68.9%. Meaningful differences with respect to 
recall and precision can be detected between the employees. The precision scores ranged 
between 0.973 for PID_1 and 0.496 for PID_5 (M = 0.695, SD = 0.137) which was the biggest 
range (0.477) amongst all meetings. Evidently, PID_1 and PID_5 stood out due to extreme 
values in either direction. Notably, across all meetings the classification approach worked 
worst for PID_5. All three machine learning classifiers predicted more instances of PID_5 
incorrectly (Random Forest: FP: 1245) than correctly (Random Forest: TP: 1225). It is 
important to note that it happened only once that more misclassifications than true 
predictions were computed for a class. Mostly, social signals of PID_6 were incorrectly 
identified as belonging to PID_5 (FP: 265). Disregarding PID_1 and PID_5, the other classes 
were fairly balanced (precision: M = 0.685, SD = 0.093).  
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The misclassification rate (error rate) for Meeting 2 was the largest compared to the other 
meetings. From all predictions made, the Random Forest classifier predicted 32.1% of 
instances incorrectly. The highest recall value was achieved for PID_4 (0.761) whereas the 
Random Forest classifier achieved the highest precision value for PID_6 (0.8). Notably, the 
instances of PID_5 were predicted much more accurate in Meeting 2 than in Meeting 1 
(precision: 0.698, recall: 0.656). The fairly similar accuracy results achieved for Meeting 1 
and Meeting 2 might stem from very similar samples. In both meetings, ten employees 
participated in the study and eight of ten employees even attended both meetings. 
Though, classification worked slightly better for Meeting 1 for which the accuracy ranged 
between 64.2% using REP Tree or NB Tree and 68.9% using Random Forest, and varied 
between 60.3% using NB Tree and 67.9% for Meeting 2 using Random Forest.  
 
Nine participants participated in Meeting 3. The Random Forest classifier achieved 78.8% 
accuracy meaning that approximately four out of five instances were predicted correctly 
(recall: M = 0.788, SD = 0.075; precision: M = 0.789, SD = 0.067). In terms of recall, the 
classification approach again worked best for PID_1. 1775 of 2004 instances, equivalent to 
88.6%, were correctly identified. In terms of precision, Random Forest achieved the highest 
value for PID_11 (0.923) whereas the least accurate results amongst all participants were 
obtained for PID_2 (precision: 0.704) and PID_7 (recall: 0.668).  
The best recognition performance was achieved in Meeting 4. The accuracy amounted to 
88.2%, 85.3% and 85.2% using Random Forest, NB Tree, and REP Tree, respectively. The 
correct predictions were consistently high across the participants, though the highest 
value was achieved for PID_6 (precision: 0.988, recall: 0.987), meaning that almost all 
instances belonging to that individual were predicted correctly. Misclassifications for that 
particular individual occurred very scarcely (FP: 15, FN: 16). In comparison to the other 
classes, classification worked less accurate for PID_8 (precision: 0.773, recall: 0.742). 
Confusion matrices for the Random Forest classifier are shown in Table 5. 
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Table 5: Confusion Matrices for Natural Classes 

M1 

 PID_1 PID_2 PID_4 PID_5 PID_6 PID_9 PID_10 PID_11 PID_12 PID_13 

PID_1 2646 15 27 20 27 6 10 0 0 8 

PID_2 7 2042 300 203 107 33 27 0 0 40 

PID_4 11 272 1942 200 212 28 34 1 8 51 

PID_5 18 247 292 1225 253 345 76 0 14 289 

PID_6 13 170 210 265 1639 200 42 51 32 137 

PID_9 3 45 38 240 110 1880 133 21 127 162 

PID_10 6 84 44 76 46 187 1913 0 156 247 

PID_11 3 1 0 2 17 19 9 1380 148 0 

PID_12 2 4 8 22 19 150 160 127 2103 164 

PID_13 10 86 89 217 176 286 356 3 115 1421 

M2 

 PID_2 PID_3 PID_4 PID_5 PID_6 PID_8 PID_9 PID_11 PID_12 PID_13 

PID_2 1173 8 159 52 11 229 21 4 25 90 

PID_3 25 1092 18 49 103 41 115 172 117 40 

PID_4 152 4 1348 9 10 221 5 1 0 22 

PID_5 111 37 60 1163 41 71 105 11 80 93 

PID_6 39 78 12 96 1267 26 21 88 60 85 

PID_8 290 6 241 41 11 1080 17 0 8 78 

PID_9 12 73 3 74 15 6 911 44 164 64 

PID_11 2 81 0 39 40 4 83 1267 160 96 

PID_12 16 65 0 49 31 3 148 54 1249 157 

PID_13 62 18 25 94 54 78 57 48 128 1208 

M3 

 PID_1 PID_2 PID_5 PID_7 PID_8 PID_9 PID_10 PID_11 PID_13  
PID_1 1775 21 68 74 53 1 11 0 1  
PID_2 11 1405 43 68 120 133 148 6 70  
PID_5 82 79 1429 113 35 97 77 39 53  
PID_7 80 100 90 1338 210 7 170 5 4  
PID_8 69 117 18 147 1581 8 59 0 5  
PID_9 2 70 46 3 7 1730 23 38 85  

PID_10 11 130 46 87 31 43 1586 8 62  
PID_11 0 13 74 3 0 64 7 1755 88  
PID_13 2 62 44 9 9 132 79 50 1617   

M4 

 PID_3 PID_4 PID_6 PID_8 PID_10 PID_13  
   PID_3 1101 18 8 69 32 30  
   PID_4 27 1084 0 118 0 29  
   PID_6 6 0 1242 1 7 2  
   PID_8 57 208 2 934 0 57  
   PID_10 24 0 5 2 1202 25  
   PID_13 40 24 0 84 16 1076   
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Discussion  
Our results provide evidence of the role of context in defining postural behavior, and thus 
influencing the identification of employees. For example, PID_1, the most senior manager 
among the participants, participated in only meetings one and three. PID_2 also 
participated in only meetings one and three, with PID_8 only participating in meetings two 
and three. That is, even when contributing less total instances to the classification 
problem, these senior team members stood out. This result also illuminates the possibility 
of lower-ranked leaders ‘stepping up’ to take on a certain role in the absence of their 
superiors, and engaging in relatively unconscious behaviors to match. A number of more 
general overall findings also arise. 
 
It was found that posture (Posture_front-back, Posture_left-right) is collectively the most 
powerful feature in recognizing individuals. In particular, the orientation angle in the front-
back plane and left-right plane were found to be consistently powerful, irrespective of the 
dataset and applied classifiers. For instance, these kinetic features together contributed 
between 82.20% accuracy in Meeting 2, using Random Forest. Interestingly, 
Audio_back_volume, has potential as an “audio posture” feature, since, as discussed, it also 
captures some information about how a sociometric badge wearer is sitting, and to what 
extent they are projecting their voice (for example, in the same meeting, adding this 
feature increased the above to 86.10% for example). 
  
In this study, we deliberately employed a minimal approach to classification here, by not 
formally factoring in the sequence or temporal structure of the instances. Additionally, in 
this study, feature consistency as a feature itself [51], was not formally measured, but 
rather was captured by maximizing the available amount of longitudinal categorical data 
available for classification (e.g. second-by-second individual instances). 
 
According to Pentland [11], consistency of movements and vocalic cues is a sign of mental 
focus and indicates less susceptibility to influence. With respect to solving the classification 
problem at hand, logically, high consistency (low variability) leads to enhanced the 
recognition performance of each individual, whereas high variability caused less accurate 
results. This is illustrated by the fact that the highest accuracy across all meetings was 
achieved for Meeting 4. In relation to the other meetings, the relative amount of influence 
had been the lowest during that meeting, which seemingly contributes to ease of 
classification. 
 
Some interesting individual level characteristics also emerge. For example, PID_5 was very 
difficult to identify in Meeting 1. A closer look at the postural position in left-right direction 
shows a higher variability in the data for that individual (M = 2.55, SD = 8.73, range = 75.03) 
compared to the others (M = 2.23, SD = 6.5, range = 50.78), possibly indicating increased 
openness to influence. Moreover, the bad recognition performance of PID_5 was 
attributable to very similar interaction patterns among the participants reflected in the 
number of misclassifications (see confusion matrix). This indicates that the non-linguistic 
behavior of PID_5 considerably overlapped with the other participants which might have 
been caused by him being mirroring signals of the group members. Since mimicry leads to 
reflexive copying of behaviors [11] it negatively affected the recognition performance. 
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Hence, if the classification approach faced homogenous behaviors in the group, the 
recognition performance decreased.  
 
Individuals exhibiting extreme social behaviors, particularly those holding leadership 
positions within the group, rather than showing group-uniform behaviors were recognized 
more accurately. For instance, considering the recognition performance of PID_1 (the most 
senior manager present, meetings 1 and 2), it is evident that PID_1 is averagely identified 
the most accurately among all employees. For this individual, the classification approach 
worked very accurately for Meeting 1 (F-measure: 0.966 with Random Forest) as well as for 
Meeting 3 (F-measure: 0.88 with Random Forest). For both meetings, the recognition 
performance of PID_1 also varied considerably versus the other employees (F-measure = 
harmonic mean of recall and precision [52]). 
 
Interestingly, PID_1 is characterized by a lower average orientation angle in the front-back 
plane (M = 42.15, SD = 6.86) compared to the orientation of the other participants (M = 
68.82, SD = 7.98). A value of 90 indicates sitting up straight or standing upright, whereas a 
value of 0 indicates a flat position in either direction. The same was found to hold true for 
Meeting 3. Whereas the other employees showed an average orientation angle in the 
front-back plane of 65.31 (SD = 7.37), the orientation angle accounted to 50.28 (SD = 8.83) 
for PID_1. This notable finding can be explained by considering the seating arrangement 
during the meetings in more detail. PID_1 was the only one who sat comfortably and 
leaned back in an office chair rather than taking the same position as the group members. 
 
Taking into account organizational structure, it is clear that PID_1 holds a senior post 
within the division. In fact, PID_1 is the head of the focal department and is responsible for 
its management and success. Theory on non-verbal communication and leadership 
impression suggests that leaning forward communicates interest whereas leaning 
backwards can potentially suggest less immediacy, or also informality and indifference 
[53,54,55,56,57], the latter two potentially being proxies for a particularly confident or 
authoritative member of a team. 
 
Some notable differences can also be detected regarding paralinguistic speech 
characteristics. The dominant behavior of the department manager is manifested in 
averagely longer speaking segments. In Meeting 1, he spoke on average for 2.73 seconds 
per speech segment and in Meeting 3 he even spoke approximately 5 seconds per speech 
segment (Meeting 1: M = 1.72, SD = 0.81; Meeting 3: M = 2.11, SD = 0.84). Different studies 
[48,58,59] demonstrated that speaking time is strongly associated with individual 
dominance and constitutes a reliable predictor of emergent leadership. Burgoon and Saine 
[60] and Harper [61] showed that dominance is not only inferred from participation rate, 
but also conveyed by speaking loudly and frequently interrupting the conversational 
partner. Interestingly, the department manager spoke with the loudest voice (Meeting 1: M 
= 0.018, SD = 0.028; Meeting 3: M = 0.014, SD = 0.014) compared to the others (Meeting 1: 
M = 0.01, SD = 0.003; Meeting 3: M = 0.06, SD = 0.002) and also interrupted frequently (111 
times in Meeting 3). 
 
As shown, multiple factors such as postural position, voice volume or participation rate 
induce the most accurate recognition performance of PID_1. As the most senior manager, 
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PID_1 took the lead during the meetings and also reinforced their dominant role by their 
non-verbal behavior. Interestingly, the department manager had not been present during 
Meeting 2, which was characterized by fairly balanced results across the employees, and 
the fact that none of the participants showed extreme interaction patterns. Evidently, the 
dominant role and position of PID_1 within the division can be clearly identified within the 
data. 
 
 
Future Research Directions 
Future research could focus more on a priori hypothesizing about the performance of 
specific features, building on our data-driven approach to feature selection. Additionally, 
future research could also take a more ‘traditional’ approach to HAR, focusing not only on 
individual identification but also on the identification of specific actions, which could 
include perspectives such as speech acts [62], and a more in-depth analysis of the 
behavioral proxies for hierarchy establishment. This could also build on the capabilities of 
the sociometric badges to facilitate the computation of non-verbal behavioral mirroring 
variables. Finally, future research will assess the impact of introducing or changing / 
switching leadership roles within contrived and natural settings, examining the associated 
changes in postural variables. 
 
Next Steps 
The next steps for this research include classification of employees grouped under job 
roles, identification of dyads, and model refinement using class balancing (e.g. under / 
over-sampling). Next steps will also include testing beyond this proof-of-concept analysis 
using larger sample sizes, and comparison across different teams and organizational 
settings. 
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