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A Brief Introduction to Deep Learning
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Deep Learning

Machine
Learning
begins to
flourish.
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MACHINE LEARNING

DEEP LEARNING

Deep Learning
breakthroughs drive
Al boom.



Deep Learning = Neural Networks

* NNs with many hidden layers

e Powerful function approximation ability — universal
approximation theorem

e Step-change performance improvement in range of
applications — computer vision, speech, NLP,
recommendation systems...

Output
e.g. time to engine overheat

Hidden layer
Add hidden layers

Inputs
e.g. engine temp, fan speed, coolant level

1980’s 2010's
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Deep Learning

Google # 0
Translate Turn off instant translation o
English Spanish French Detect language ~ Chinese (Simplified) English Spanish ~ m
0/5000
Type text or a website address or translate a document.

“Google shrinks language translation code from 500,000 to 500 lines with Al”
Import Al: #63

a UNIVERSITY OF

d CAMBRIDGE https://jack-clark.net/2017/10/09/import-ai-63-google-shrinks-language-translation-code-from-500000-to-500-lines-with-ai-only-25-of-surveyed-
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Motivating Uncertainty
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Motivating Uncertainty
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1. A factory manageris notlfled by an algorithm that a machine will fail in
60 days... How do they schedule maintenance on this information?
Does it need repair tomorrow, or can it be run for 59 days?

2. Afactory manager is notified by an algorithm that a machine will fail in
between 45-65 days with 99% probability... timing of a repair is easily
scheduled.

How can we make our algorithms do this?

5B UNIVERSITY OF The
4P CAMBRIDGE Alan Turing
Cambridge Service Alliance Instltute




Motivating Uncertainty
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Motivating Uncertainty

e Given x, what is the expected value of y? E(y|x)
* How certain are we of this estimate? Var(y|x)

* Model predictive distribution, Pr(y|x)

* Model Prediction Interval (Pl), y_upper, y_lower
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Uncertainty Philosophy
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Uncertainty Philosophy

e Regression philosophy
y=f(x)+e

* Uncertainty of y

2 _ 2 2
Uy = Omodel + O noise

* Input covariates, x

* QOutputs, y

« Data generating function, f(.)
* Noise, e
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Uncertainty Philosophy

* What’s the certainty of our prediction when x=27?
* How about x=07?
e How about x=107?
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Uncertainty Philosophy
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* Uncertainty grows in regions we don’t have data
* Model uncertainty (epistemic)
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Uncertainty Philosophy
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* Data noise variance (aleatoric)
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Uncertainty Philosophy

e Regression philosophy

* Uncertainty of y

2 _ | 2 2
Uy — |9 model + O noise

Model Uncertainty  Data Noise Uncertainty
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Uncertainty in Deep Learning
Existing Approaches
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Uncertainty in Deep Learning

* Generally a Neural Network (NN) outputs a single point estimate
e Existing methods to output uncertainty

Model uncertainty:

e Bayesian Neural Networks

* Dropout as Variational Inference
* Ensembling

* Conformal Prediction

Data noise uncertainty
* Mean Variance Estimation
* Lower Upper Bound Estimation
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High-Quality Prediction Intervals for Deep Learning

A new method to capture data variance
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Prediction Intervals and Neural Networks

* The objective of Prediction Intervals
* Narrow width — not 0-1000 days
e Whilst capturing some predefined proportion

So why not use this directly as the objective function?
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Prediction Intervals and Neural Networks
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Prediction Intervals and Neural Networks

Let the set of input covariates and target observations be X
and y, for n data points, and with x; € R” denoting the ith
D dimensional input corresponding to y;, for 1 < ¢ < n.
The predicted lower and upper PI bounds are ¥1,, yy. A PI
should capture some desired proportion of the observations,
(1 — ), common choices of « being 0.01 or 0.05,

A vector, k, of length n represents whether each data point
has been captured by the estimated PIs, with each element
k; € {0,1} given by,

s — L, fyr: <yi <yus @)
0, else.
We define the total number of data points captured as c,
n
5 UNIVERSITY OF The ¢= Z k. (5)
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Prediction Intervals and Neural Networks

* Mean Prediction Interval Width (MPIW)

I .
MPIW =~ jui = iL:

=1

* Prediction Interval Coverage Proportion (PICP)

pICP = £

n

58 UNIVERSITY OF The .
4% CAMBRIDGE Alan Turing
Cambridge Service Alliance Instltute




Prediction Intervals and Neural Networks

[skipped the maths in between... |

* The objective function...

Lossgp =

n
MPIWCapt. + )\m

max (0, (1 — «) — PICP)?
* Showed how to use it with gradient descent

* Also doesn’t capture ‘model uncertainty’, proposed ensembling for this

 Named the Quality-Driven (QD) method
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Prediction Intervals and Neural Networks
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Prediction Intervals and Neural Networks

Model uncertainty
———————— Indiv. boundaries
—— Ensemble boundary
—— True data fn
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Prediction Intervals and Neural Networks

* Comparing to model with distributional assumption y = 0.3sin(z) + 0.2¢
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Results
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Results

* Ten open-access benchmarking datasets

= MVE mQD Pl Coverage Proportion (target 95%)
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Results

* Ten open-access benchmarking datasets

=MVE =QD Mean Pl Width (smaller better)
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High-Quality Prediction Intervals for Deep Learning:
A Distribution-Free, Ensembled Approach

Tim Pearce '> Mohamed Zaki' Andy Neely' Alexandra Brintrup '

Abstract

Deep Neural Networks are a powerful technique
for learning complex functions from data. How-
ever, their appeal in real-world applications can
be hindered by an inability to quantify the uncer-
tainty of predictions. In this paper, the generation
of prediction intervals (PI) for quantifying uncer-
tainty in regression tasks is considered.

It is axiomatic that high-quality PIs should be as
narrow as possible, whilst capturing a specified

is a large downside to an incorrect prediction: Examples can
be found in prognostics, manufacturing, finance, weather,
traffic and energy networks. There is therefore interest in
how NNs can be modified to meet this requirement.

In this work the output of Prediction Intervals (PIs) in re-
gression tasks is considered. Whilst NNs by default output
point estimates, PIs directly communicate uncertainty, offer-
ing a lower and upper bound for a prediction and assurance
that with some high probability (e.g. 95% or 99%), the
realised data point will fall between these bounds. Having

shaion s F ntsrne allasen Foe lhnttne 10 F, ad danicionsme ol
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Real-World Application
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Real-World Application

* Application to warranty data — use to
screen incoming claims for consistency

Claim| Product |Region| Comment | Part Expected Actual
No. amount amount

123 [Turbo UK Customer |[Fan-13A $80 to $200 2 Compare $123

range complained 1. Estimate Pls ) P

about noise $20to $120| toactual reoa7s
during ﬁ ﬁ
operation.

Fan was
found to be

faulty and .
was 3. Action
replaced.

124 |Eco UK Door Hinge-112
series sticking.
Hinge NO
appeared to
have been
forced.
Repaired
fine.
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Thanks for listening
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