
High-Quality Prediction Intervals for
Deep Learning:
A Distribution-Free, Ensembled
Approach
Tim Pearce, Mohamed Zaki, Alexandra Brintrup, Andy Neely
This is a Working Paper

Why this paper might be of interest to Alliance Partners:

Deep neural networks (NNs) have caused great excitement due to the step-changes in
performance they have delivered in a variety of applications. However, their appeal in
industry can be inhibited by an inability to quantify the uncertainty of their predictions. To
take a prognostics example, a typical NN might predict that a machine will fail in 60 days. It
is unclear from this point prediction whether the machine should be repaired immediately,
or whether it can be run for another 59 days. However, if the NN could output a prediction
interval (PI) of 45-65 days with 99% probability, timing of a repair could easily be scheduled.

In this paper, we develop a method for doing exactly this - the quantification of uncertainty
in deep learning using PIs. We derive a method based on the assumption that high-quality
PIs should be as narrow as possible, whilst still capturing a given proportion of data. The
method is general, applicable to any data-driven task where a continuous value needs
to be predicted, and it is important to know the uncertainty of that prediction. Examples
include the forecasting of precipitation, energy load, financial metrics, and traffic volume.

The method is tested on ten real-world, open-source datasets. The proposed method
is shown to outperform current state-of-the-art uncertainty quantification methods,
reducing average PI width by around 10%.

February 2018
Find out more about the Cambridge Service Alliance:

Linkedin Group: Cambridge Service Alliance
 www.cambridgeservicealliance.org

The papers included in this series have been selected from a number of sources, in order to highlight the variety of service
related research currently being undertaken within the Cambridge Service Alliance and more broadly within the University
of Cambridge as a whole.

 © Cambridge Service Alliance 2018

http://www.linkedin.com/groups?mostPopular=&gid=3866131
http://www.cambridgeservicealliance.org

High-Quality Prediction Intervals for Deep Learning:
A Distribution-Free, Ensembled Approach

Tim Pearce 1 2 Mohamed Zaki 1 Alexandra Brintrup 1 Andy Neely 1

Abstract
Deep neural networks are a powerful technique
for learning complex functions from data. How-
ever, their appeal in real-world applications can
be hindered by an inability to quantify the uncer-
tainty of predictions. In this paper, the generation
of prediction intervals (PI) for quantifying uncer-
tainty in regression tasks is considered.

It is axiomatic that high-quality PIs should be as
narrow as possible, whilst capturing a specified
portion of data. In this paper we derive a loss
function directly from this high-quality principle
that requires no distributional assumption. We
show how its form derives from a likelihood prin-
ciple, that it can be used with gradient descent,
and that in ensembled form, model uncertainty is
accounted for. This remedies limitations of a pop-
ular model developed on the same high-quality
principle.

Experiments are conducted on ten regression
benchmark datasets. The proposed quality-driven
(QD) method is shown to outperform current state-
of-the-art uncertainty quantification methods, re-
ducing average PI width by around 10%.

1. Introduction
Deep neural networks (NNs) have achieved impressive per-
formance in a wide variety of tasks in recent years, however,
success is generally in terms of aggregated accuracy metrics.
For many real-world applications, it is not enough that on av-
erage a model performs well, rather the uncertainty of each
estimate must also be quantified. This can be particularly
important where there is a large downside to an incorrect
prediction: Examples can be found in prognostics, manufac-
turing, finance, weather, traffic and energy networks. There

1Department of Engineering, University of Cambridge, UK
2Alan Turing Institute, London, UK. Correspondence to: Tim
Pearce <tp424@cam.ac.uk // tpearce87@yahoo.co.uk>.

Submitted (9 th February 2018) to proceedings of the 35 th Inter-
national Conference on Machine Learning, Copyright 2018 by the
author(s).

is therefore interest in how NNs can be modified to meet
this requirement (Krzywinski & Altman, 2013; Gal, 2016).

In this work the output of Prediction Intervals (PIs) in re-
gression tasks is considered. Whilst NNs by default output
point estimates, PIs directly communicate uncertainty, offer-
ing a lower and upper bound for a prediction and assurance
that, with some high probability (e.g. 95% or 99%), the
realised data point will fall between these bounds. Having
this information allows for better informed decisions.

As an example, a point estimate stating that a machine will
fail in 60 days may not be sufficient to schedule a repair,
however given a PI of 45-65 days with 99% probability,
timing of a repair is easily scheduled.

A diverse set of approaches have been developed to quan-
tify NN uncertainty, ranging from Bayesian NNs (MacKay,
1992), to casting NNs with dropout as Gaussian Processes
(Gal & Ghahramani, 2015). Many of these require high com-
putational demands or strong distributional assumptions.

In this work we take a direct approach. It is self evident
that high-quality PIs should be as narrow as possible, whilst
capturing some specified proportion of data points (here-
after referred to as the HQ principle). Indeed it is through
these metrics that PI quality is often assessed (Papadopoulos
et al., 2000; Khosravi et al., 2011b; Galván et al., 2017). We
show how a loss function can be derived directly from this
HQ principle, and used in an ensemble to produce PIs ac-
counting for both model uncertainty and data noise variance.
The key advantages of the method are its intuitive objective,
relatively low computational demand, robustness to outliers,
and lack of distributional assumption.

Notably we build on the work of Khosravi et al. (2011a)
who developed the Lower Upper Bound Estimation (LUBE)
method, insightfully incorporating the HQ principle directly
into the NN loss function for the first time. LUBE is gain-
ing popularity in several communities, for example in the
forecasting of energy demand and wind speed (section 2).
However, we have identified several limitations of its current
form.

• Gradient Descent - It was stated that the method was
incompatible with gradient descent (GD), a belief car-

High-Quality Prediction Intervals for Deep Learning

ried forward, unchallenged, in all subsequent work
(section 2). Implementations therefore require non-
gradient based methods for training, such as Simu-
lated Annealing (SA) and Particle Swarm Optimisation
(PSO). This is inconvenient since GD has become the
standard training method for NNs (Goodfellow et al.,
2016), used by all modern NN APIs.

• Loss Form - Its current form suffers from several prob-
lems. The function is at a global minimum when all
PIs are reduced to zero. It was also designed through
qualitative assessment of the desired behaviour rather
than using a statistical basis.

• Model Uncertainty - LUBE accounts only for data-
noise variance and not model uncertainty (section 2.1).
This is an oversimplification (Heskes, 1996), implicitly
assuming that training data fully populates the input
space, which is seldom the case.

In this work we develop a model addressing each of these is-
sues - henceforth referred to as the quality-driven PI method
(QD), and QD-Ens when explicitly referring to the ensem-
bled form.

We link early literature on PIs for NNs (Tibshirani, 1996;
Heskes, 1996; Papadopoulos et al., 2000; Khosravi et al.,
2011a), with recent work on uncertainty in deep learning
(Hernández-Lobato & Adams, 2015; Gal & Ghahramani,
2015; Lakshminarayanan et al., 2017) - areas which have
remained surprisingly distinct. We achieve this by following
the same experimental procedure of recent work, assessing
performance across ten benchmark regression datasets. We
compare QD’s performance with the current best perform-
ing model, originally named Deep Ensembles (Lakshmi-
narayanan et al., 2017), here referred to as MVE-Ens. We
show that QD outperforms in PI quality metrics, achiev-
ing closer to the desired coverage proportion, and reducing
average PI width by around 10%.

2. Related Work
In this section we consider methods to quantify uncertainty
in regression with NNs. Three review papers catalogued
early work (Tibshirani, 1996; Papadopoulos et al., 2000;
Khosravi et al., 2011b), the latter two specifically consider-
ing PIs. Three primary methods were presented:

• The Delta method adopts theory for building confi-
dence intervals (CIs) used by general non-linear re-
gression models, estimating model uncertainty. It is
computationally demanding as it requires use of the
Hessian matrix.

• Mean Variance Estimation (MVE) (Nix & Weigend,
1994) uses a NN with two output nodes - one represent-

ing the mean and the other the variance of a normal dis-
tribution, allowing estimation of data noise variance.
The loss function used is the Negative Log Likelihood
(NLL) of the predicted distribution given the data.

• The Bootstrap (Heskes, 1996) estimates model uncer-
tainty. It trains multiple NNs with different parameter
initialisations on different resampled versions of the
training dataset. It is easily combined with MVE to
estimate total variance.

In addition, Bayesian NNs (BNNs) treat weights as distribu-
tions rather than point estimates (MacKay, 1992), and hence
can predict distributions rather than point estimates. Their
drawback is that the computational cost of running MCMC
algorithms can be prohibitive. Recent work has focused on
addressing this (Graves, 2011; Hernández-Lobato & Adams,
2015; Blundell et al., 2015).

It was shown how casting NNs with dropout as Gaussian
Processes enables model uncertainty to be extracted (Gal
& Ghahramani, 2015). Finally, Lakshminarayanan et al.
(2017) produced a modernisation of Heskes’ work (1996),
combining individual MVE NNs in an ensemble (without
resampling the dataset - section 4). They also included
adversarial training examples. We henceforth refer to this
as MVE Ensemble (MVE-Ens).

These modern works all complied with an experimental
protocol laid out by Hernandez-Lobato & Adams (2015),
assessing NLL & RMSE across ten benchmark regression
datasets. MVE-Ens is the current best performer, although
the dropout model only accounted for model uncertainty. By
contrast, the PI literature reports metrics around coverage
proportion and PI width.

LUBE (Khosravi et al., 2011a) was developed on the HQ
principle. Originally it was proposed with SA as the train-
ing method, and much effort has gone toward trialling it
with various non-gradient based training methods including
Genetic Algorithms (Ak et al., 2013a), Gravitational Search
Algorithms (Lian et al., 2016), Particle Swarm Optimisation
(Galván et al., 2017; Wang et al., 2017), Extreme Learning
Machines (Sun et al., 2017), and Artificial Bee Colony Algo-
rithms (Shen et al., 2018). Multi-objective optimisation has
been found useful in considering the tradeoff between PI
width and coverage (Galván et al., 2017; Shen et al., 2018).

LUBE has been used in a plethora of application-focused
work: Particularly in energy load (Pinson & Kariniotakis,
2013; Quan et al., 2014) and wind speed forecasting (Wang
et al., 2017; Ak et al., 2013a), but also prediction of landslide
displacement (Lian et al., 2016), gas flow (Sun et al., 2017),
solar energy (Galván et al., 2017), condition-based main-
tenance (Ak et al., 2013b), and others. All work has used
LUBE as a single NN, making no attempt to account for
model uncertainty (section 2.1).

High-Quality Prediction Intervals for Deep Learning

2.1. The Uncertainty Framework

This section describes uncertainty in regression, it is an ag-
glomeration of several prominent works (Tibshirani, 1996;
Heskes, 1996; Papadopoulos et al., 2000; Shafer & Vovk,
2008; Mazloumi et al., 2011; Khosravi et al., 2011b; Lak-
shminarayanan et al., 2017), each of who presented similar
concepts but under different guises and terminology. We
attempt to reconcile them here.

The philosophy behind regression is that some data generat-
ing function, f(x), exists, combined with additive noise, to
produce observable target values y,

y = f(x) + ε. (1)

The ε component is termed irreducible noise or data noise.
It may exist due to exclusion of (minor) explanatory vari-
ables in x, or due to an inherently stochastic process. Some
models, for example the Delta method, assume ε is constant
across the input space (homoskedastic), others allow for it
to vary (heteroskedastic), for example MVE.

Generally the goal of regression is to estimate f̂(x), which
allows prediction of point estimates (ε is assumed to have
mean zero). However, when estimating the uncertainty of y,
additional terms must be estimated. Given that both terms of
eq. (1) have associated sources of uncertainty, and assuming
they are independent, the total variance of observations is
given by,

σ2
y = σ2

model + σ2
noise, (2)

with σ2
model termed model uncertainty or epistemic uncer-

tainty - uncertainty in f̂(x) - and σ2
noise irreducible vari-

ance, data noise variance, or aleatoric uncertainty.

It is worth here distinguishing CIs from PIs. CIs consider
the distribution Pr(f(x)|f̂(x)), and hence only require esti-
mation of σ2

model, whilst PIs consider Pr(y|f̂(x)) and must
additionally consider σ2

noise. PIs are necessarily wider than
CIs.

Model uncertainty can be attributed to several factors.

• Model misspecification or bias - How closely f̂(x)
approximates f(x), assuming ideal parameters and
plentiful training data.

• Training data uncertainty or variance - Training
data is a sample of the entire input population. There
is uncertainty over how representative the sample is,
and how sensitive the model is to other versions of it.

• Parameter uncertainty - Given a training dataset and
model, uncertainty may exist around the optimum pa-
rameters of the model.

Different model types have different weightings for each
of these factors (bias-variance trade-off). Provided the
number of hidden neurons is large relative to the complexity
of f(X), NNs are considered to have low bias and high
variance. Work on uncertainty in NNs therefore generally
ignores model misspecification, and only estimates training
data uncertainty and parameter uncertainty (Heskes, 1996).

To construct PIs, σ2
y must be estimated at each prediction

point. In regions of the input space with more data, σ2
model

decreases, and σ2
noise becomes the larger component1. In

regions of the input space with little data, σ2
model grows.

Lakshminarayanan et al. (2017) recognise this in more
intuitive terms - that two sources of uncertainty exist.

1. Calibration - Data noise variance in regions which are
well represented by the training data.

2. Out-of-distribution - Uniqueness of an input2 - inputs
less similar to training data should lead to less certain
estimates.

3. A Quality-Driven, Distribution-Free Loss
Function

3.1. Derivation

We now derive a loss function based on the HQ principle.
Let the set of input covariates and target observations be X
and y, for n data points, and with xi ∈ RD denoting the ith
D dimensional input corresponding to yi, for 1 ≤ i ≤ n.
The predicted lower and upper PI bounds are ŷL, ŷU. A PI
should capture some desired proportion of the observations,
(1− α), common choices of α being 0.01 or 0.05,

Pr(ŷLi ≤ yi ≤ ŷUi) ≥ (1− α). (3)

A vector, k, of length n represents whether each data point
has been captured by the estimated PIs, with each element
ki ∈ {0, 1} given by,

ki =

{
1, if yLi ≤ yi ≤ yUi
0, else.

(4)

We define the total number of data points captured as c,

c :=

n∑
i=1

ki. (5)

1At the same time, σ2
noise may be estimated more reliably

although uncertainty of this estimate is not generally accounted
for.

2Conformal prediction provides a framework to assess this.

High-Quality Prediction Intervals for Deep Learning

Let Prediction Interval Coverage Probability (PICP) and
Mean Prediction Interval Width (MPIW) be defined as,

PICP :=
c

n
, (6)

MPIW :=
1

n

n∑
i=1

ŷUi − ŷLi. (7)

According to the HQ principle, PIs should minimise
MPIW subject to PICP ≥ (1 − α). To minimise
MPIW , eq. (7) could simply be included in the loss func-
tion, however PIs that fail to capture their data point should
not be encouraged to shrink further. We therefore introduce
captured MPIW as the MPIW of only those points for
which ŷL ≤ y ≤ ŷL holds,

MPIWcapt. :=
1

c

n∑
i=1

(ŷUi − ŷLi) · ki. (8)

Regarding PICP , we take a likelihood-based approach,
choosing NN parameters, θ, to maximise,

Lθ := L(θ|k, α). (9)

Remembering that k denotes whether each data point is
captured by the estimated PI, ki can be considered an inde-
pendent and identically distributed Bernoulli random vari-
able (one per prediction), and the total number of captured
observations, c, can be represented by a binomial distribu-
tion, ki ∼ Bernoulli(1 − α), c ∼ Binomial(n, (1 − α)).
Substituting in the pmf,

Lθ =

(
n

c

)
(1− α)cαn−c. (10)

The factorials in the binomial coefficient make computation
difficult. However using the central limit theorem (specif-
ically the de Moivre-Laplace theorem) it can be approxi-
mated by a normal distribution. For large n,

Binomial(n, (1−α)) ≈ N
(
n(1−α),

√
nα(1− α)

)
(11)

=
1√

2πnα(1− α)
exp− (c− n(1− α))2

2nα(1− α)
. (12)

It is common to minimise the NLL rather than maximise the
likelihood,

− logLθ ∝ (n(1− α)− c)2 (13)

=
√
n((1− α)− PICP)2. (14)

Remembering that a penalty should only occur in the case
where PICP < (1− α), results in a one-sided loss. Com-
bining with eq. (8) and adding a Lagrangian, λ,

LossQD =

MPIWcapt. + λ
√
n max(0, (1− α)− PICP)2. (15)

3.2. Comparison to LUBE

The derived loss function in eq. (15) may be compared to
the LUBE loss (Khosravi et al., 2011a),

LossLUBE =

MPIW

r

(
1 + exp(λ max(0, (1− α)− PICP))

)
,

(16)

where r = max(y) − min(y), is the range of the target
variable.

Whilst still recognisable as having the same objective, the
differences are significant. They are summarised and justi-
fied as follows.

• A squared term has replaced the exponential. Whilst
the RHS for both is minimised when PICP ≥ (1 −
α), the squared term was derived based on likelihood
whilst the exponential term was selected qualitatively.

• The inclusion of
√
n intuitively makes sense since a

larger sample size provides more confidence in the
value of PICP , and hence a larger loss should be
incurred. It also removes the need to adjust λ based on
batch size.

• MPIW now has an additive rather than multiplicative
effect. Multiplying has the attractive property of ensur-
ing both terms are of the same magnitude. However it
also means that a global minimum is found when all
PIs are of zero width. We found in practise that NNs
occasionally did produce this undesirable solution.

• MPIW is no longer normalised by the range of y.
Data for a NN should already be normalised during
preprocessing. Further normalisation is therefore con-
sidered redundant.

• MPIWcapt. is used rather than MPIW . As dis-
cussed in section 3.1 this avoids the NN benefiting
by further reduction of PI widths for missed data.

High-Quality Prediction Intervals for Deep Learning

1
Input variable, X

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg
et
 v
ar
ia
bl
e,
 y

yL = 0.15

Figure 1. Set up for the toy problem: Left is input data (10 data
points linearly spaced at fixed input x = 1.0), right is the NN used
(one trainable weight).

3.3. Training QD with Gradient Descent

It was originally believed that the LUBE loss function
was, ”nonlinear, complex, and non-differentiable... gra-
dient descent-based algorithms cannot be applied for its
minimization” (Khosravi et al., 2011a). This belief has
been carried forward, unchallenged, in all subsequent work
- see section 2 for numerous examples. It is inconvenient
since GD is the standard method for training NNs, so imple-
mentations require extra work.

Regarding the quoted justification, most standard loss func-
tions are non-linear - e.g. L2 errors - and whilst the LUBE
loss function is complex, this does not affect its compatibil-
ity with GD3. The non-differentiability comment is partially
valid. Because the loss function requires the use of step
functions, it is not differentiable everywhere. But this is not
an unsurmountable problem: ReLUs are a common choice
of activation function in modern NNs, despite not being
differentiable when the input is exactly zero4.

3.3.1. GD TOY EXAMPLE

LossQD can be directly implemented as shown in Algo-
rithm 1 (LossH), however it fails to converge to a minimum.
We demonstrate why this is the case and how it can be
remedied through a toy example.

Consider a NN as in figure 1 with one input and two output

3Modern NN APIs generally handle gradient computation au-
tomatically, through application of the chain rule to the predefined
operations. Provided functions within the API library are used,
gradient calculations are automatically handled.

4Software implementations return one of the derivatives either
side of zero when the input corresponds to the undefined point
rather than raising an error (Goodfellow et al., 2016).

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Trainable eight value, w1

2

4

6

8

10

12

Lo
ss
 v
al
ue

LossQD, λ=15
LossQD, λ=5
LossQD− soft, λ=15, s=50
LossQD− soft, λ=15, s=150
Optimum

Figure 2. Error surface of LossQD , and LossQD−soft on toy
problem, with effect of hyperparameters λ and s.

neurons, linear activations and no bias. For purposes of
clarity, one weight is fixed, w2 = 0.15, to create a one
dimensional problem with a single trainable weight, w1.
Given 10 data points evenly spaced at x = 1.0, and α = 0.2,
the optimal value for ŷU (and therefore w1) is 0.9, which
gives the lowest MPIW , subject to PICP ≥ 1−α = 0.8.

LossQD is plotted in figure 2. Whilst the global minimum
occurs at the desired point, this solution is not found through
GD. Given the steepest descent weight update rule with
some learning rate τ ,

w1,t+1 = w1,t − τ
∂LossQD
∂w1,t

, (17)

the weight shrinks without converging. This is because
the gradient, ∂Loss∂w1

, at any point is positive, except for the
discontinuities which are never realised.

To remediate this, we introduce an approximation of the
step function. The sigmoid function has been used in the
past as a differentiable alternative (Yan et al., 2004). In eq.
(4), k, the captured vector was defined. We redefine this as
khard and introduce a relaxed version as follows,

ksoft = σ(s(y − ŷL))� σ(s(ŷU − y)), (18)

where σ is the sigmoid function, and s > 0 is some soften-
ing factor. We further define PICPsoft and LossQD−soft
by replacing khard with ksoft in equations (6) & (15) re-
spectively - see also LossS in Algorithm 1.

Figure 2 shows the result of using LossQD−soft. By choos-
ing an appropriate value for s, following the steepest gra-
dient does converge to a minimum, making GD a viable

High-Quality Prediction Intervals for Deep Learning

Algorithm 1 Construction of loss function using basic op-
erations

Input: Target values, y, predictions of lower and upper
bound, ŷL, ŷU, desired coverage, (1− α), and sigmoid
softening factor, s, � denotes the element-wise product.

which samples captured:
hard uses sign step fn, sign returns -1 if -ve, +1 if +ve
kHU = max(0, sign(ŷU − y))
kHL = max(0, sign(y − ŷL))
kH = kHU � kHL

soft uses sigmoid fn
kSU = sigmoid((ŷU − y) · s)
kSL = sigmoid((y − ŷL) · s)
kS = kSU � kSL

combine for loss fn
MPIWc =

reduce sum((ŷU − ŷL)� kH))/reduce sum(kH)
PICPH = reduce mean(kH)
PICPS = reduce mean(kS)
LossH = MPIWc+λ·

√
n·max(0, (1−α)−PICPH)2

LossS = MPIWc+λ·
√
n·max(0, (1−α)−PICPS)2

method. Setting s = 160 worked well in experiments in
section 6, requiring no alteration across datasets.

3.4. Particle Swarm Optimisation

The original LUBE loss function, eq. (16), has been im-
plemented with various evolutionary training schemes that
do not require derivatives of the loss function. In order to
test the efficacy of LossQD−soft with GD, we compared to
an evolutionary-based training method (section 5.1). PSO
(Kennedy & Eberhart, 1995) was chosen due to use in recent
work with LUBE (Galván et al., 2017; Wang et al., 2017).
We make the assumption that other evolutionary methods
would offer similar performance (Jones, 2005). The reader
is referred to (Kennedy & Eberhart, 2001) for a detailed
introduction to PSO.

4. Ensembles to Estimate Model Uncertainty
In section 2.1, two components of uncertainty were defined;
model uncertainty and data noise variance. It appears that
previous work assumed both were accounted for (section 2).
In fact, LUBE & QD only estimate data noise variance, and
there is a need to place uncertainty estimates on the models
themselves. This becomes particularly important when new
data is encountered. Consider a NN trained for the example
in figure 1: Despite being capable of estimating the data
noise variance at x = 1.0, if shown new data at x = 2.0 it

would predict ŷU = 1.8, with little basis.

Ensembling models provides a conceptually simple way to
deal with this. Recall from section 2.1 that three sources of
model uncertainty exist, and that the first, model misspec-
ification, is assumed zero for NNs. Parameter uncertainty
can be measured by training multiple NNs with different
parameter initialisations (parameter resampling). Training
data uncertainty can be done similarly: Sub-sampling from
the training set, and fitting a NN to each subset (bootstrap
resampling). The resulting ensemble of NNs contains some
diversity, and the variance of their predictions can be used
as an estimate of model uncertainty.

Recent work reported that parameter resampling offered
superior performance to both bootstrap resampling, and a
combination of the two (Lee et al., 2015; Lakshminarayanan
et al., 2017). No robust justification has been given for this.

Given an ensemble of m NNs trained with LossQD−soft,
let ỹU, ỹL represent the ensemble’s upper and lower esti-
mate of the PI. We calculate model uncertainty and hence
the ensemble’s PIs as follows,

ȳUi =
1

m

m∑
j=1

ŷUij , (19)

σ̂2
model = σ2

Ui =
1

m− 1

m∑
j=1

(ŷUij − ȳUi)2, (20)

ỹUi = ȳUi + 2σUi, (21)

where ŷUij represents the upper bound of the PI for data
point i, for NN j. A similar procedure is followed for ỹLi,
subtracting rather than adding 2σLi.

5. Qualitative Experiments
In this section behaviour of QD is qualitatively assessed on
synthetic data. Firstly, the GD method of training explained
in section 3.3 is compared to PSO. Next, the advantage of
QD over MVE (section 2) in data with non-normal variance
is shown. Finally, the effectiveness of the ensembled QD
approach at estimating model uncertainty is demonstrated.
Full experimental details can be found in supplementary
material.

5.1. Training method: PSO vs. GD

Comparison of evolutionary methods vs. GD for NN train-
ing is its own research topic, and as such analysis here is lim-
ited. Preliminary experiments showed that GD performed
slightly better than PSO in terms of PICP and MPIW ,

High-Quality Prediction Intervals for Deep Learning

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

PSO

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

GD

Figure 3. Comparison of PI boundaries for GD vs. PSO training
methods. Shading is the predicted 95% PI. Ground truth is given
by blue lines - the ideal 95% boundaries and mode.

producing smoother, tighter boundaries, both more consis-
tently and with lower computational effort. See figure 3 for
a graphical comparison of typical PI boundaries. Data was
generated by y = 0.3 sin(x) + 0.2ε, with ε ∼ N(0, x4).

5.2. Loss function: QD vs. MVE

Here, the advantage of a distribution-free loss function is
demonstrated by comparing MVE, which assumes Gaussian
data noise, to QD, which makes no such assumption, on
two synthetic datasets. The first was generated as in 5.1
with normal noise, the second with exponential noise, ε ∼
exp(1/x2).

Figure 4 shows, unsurprisingly, that MVE outputs PIs very
close to the ideal for normal noise, but struggles with ex-
ponential noise. QD approximates both reasonably, though
does not learn the boundaries well where data is sparse.
Though possible to alter MVE to assume an exponential
distribution, this would require significant work. With real
data, the distribution would be unknown, and likely irregular,
putting QD at an advantage.

5.3. Model Uncertainty Estimation: Ensembles

This experiment demonstrated the ability of ensembling to
estimate model uncertainty. Data was generated through
y = 0.02x3 + 0.02ε, with ε ∼ N(0, 32). Figure 5 shows
ten individual QD PIs as well as the ensembled PIs. The
estimated model uncertainty, σ̂2

model, calculated from eq.
(20) is overlaid5. Whilst it is difficult to reason about the
correctness of the absolute value, its behaviour agrees with
the intuition that uncertainty should increase in regions of
the input space that are not represented in the training set,
here x ∈ [−1, 1], and x > 4, x < −4.

6. Benchmarking Experiments
To compare QD to recent work on uncertainty in deep
learning, we adopted their shared experimental procedure

5With uncertainty of the upper and lower bound averaged.

(Hernández-Lobato & Adams, 2015; Gal & Ghahramani,
2015; Lakshminarayanan et al., 2017). Experiments were
run across ten open-access datasets. Models were asked to
output 95% PIs and allowed five NNs per ensemble. See
appendices for full experimental details. Code is made avail-
able online6.

Previous work reported NLL & RMSE metrics. However,
the important metrics for PI quality areMPIW and PICP
(section 1). This meant that we had to reimplement a com-
peting method. We chose to compare QD-Ens to MVE-Ens,
since it had reported the best NLL results to date (Laksh-
minarayanan et al., 2017). We did not include LUBE since
ensembling and GD had already been justified in section 5.

QD-Ens and MVE-Ens both output fundamentally different
things; MVE-Ens a distribution, and QD-Ens upper and
lower estimates of the PI. To compute NLL & RMSE for
QD-Ens is possible only by imposing a distribution on the
PI. This is not particularly fair since the attraction of the
method is its lack of distributional assumption. Purely for
comparison purposes we did this in the appendices.

A fairer comparison is to convert the MVE-Ens output dis-
tributions to PIs, and compute PI quality metrics. This was
done by trimming the tails of the MVE-Ens output nor-
mal distributions by the appropriate amount, which allowed
extraction of MPIW , PICP , and LossQD−soft. In our
experiments we ensured MVE-Ens achieved NLL & RMSE
scores at least as good as those reported in the original work,
before PI metrics were calculated.

6https://github.com/TeaPearce

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

MVE, ε ∼ Norm.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

QD, ε ∼ Norm.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1

0

1

2

3

y

MVE, ε ∼ Exp.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

QD, ε ∼ Exp.

Figure 4. Comparison of PI boundaries for two loss functions, QD
vs. MVE, given data noise variance drawn from different distribu-
tions. Legend as for figure 3.

High-Quality Prediction Intervals for Deep Learning

Table 1. PI quality metrics on 10 benchmarking regression datasets; mean ± one standard error, best result in bold. Best was assessed
according to the following criteria. If PICP ≥ 0.95 for both, both were best for PICP , and best MPIW was given to smallest
MPIW . If PICP ≥ 0.95 for neither or for only one, largest PICP was best, and MPIW only assessed if the one with larger PICP
also had smallest MPIW .

LOSSQD−soft PICP MPIW
MVE-ENS QD-ENS MVE-ENS QD-ENS MVE-ENS QD-ENS IMPROVEMENT

BOSTON 1.76 ± 0.28 1.33 ± 0.05 0.89 ± 0.02 0.92 ± 0.01 0.87 ± 0.03 1.16 ± 0.02 NA
CONCRETE 1.23 ± 0.06 1.16 ± 0.02 0.92 ± 0.01 0.94 ± 0.01 1.00 ± 0.02 1.09 ± 0.01 NA
ENERGY 0.50 ± 0.02 0.47 ± 0.01 0.99 ± 0.00 0.97 ± 0.01 0.50 ± 0.02 0.47 ± 0.01 7%
KIN8NM 1.14 ± 0.01 1.24 ± 0.01 0.97 ± 0.00 0.96 ± 0.00 1.14 ± 0.01 1.25 ± 0.01 -10%
NAVAL 0.31 ± 0.01 0.27 ± 0.01 0.99 ± 0.00 0.98 ± 0.00 0.31 ± 0.01 0.28 ± 0.01 10%
POWER PLANT 0.91 ± 0.00 0.86 ± 0.00 0.96 ± 0.00 0.95 ± 0.00 0.91 ± 0.00 0.86 ± 0.00 6%
PROTEIN 2.70 ± 0.01 2.28 ± 0.01 0.96 ± 0.00 0.95 ± 0.00 2.69 ± 0.01 2.27 ± 0.01 15%
WINE 4.13 ± 0.31 3.13 ± 0.19 0.90 ± 0.01 0.92 ± 0.01 2.50 ± 0.02 2.33 ± 0.02 7%
YACHT 0.31 ± 0.02 0.23 ± 0.02 0.98 ± 0.01 0.96 ± 0.01 0.30 ± 0.02 0.17 ± 0.00 43%
SONG YEAR 2.90 ± NA 2.47 ± NA 0.96 ± NA 0.96 ± NA 2.91 ± NA 2.48 ± NA 15%

−6 −4 −2 0 2 4 6
x

−3

−2

−1

0

1

2

3

y

Model uncertainty
Indiv. boundaries
Ensemble boundary
True data fn

0.05

0.10

0.15

0.20

0.25

Es
tim

at
ed

 m
od

el
 u
nc

er
ta
in
ty

Figure 5. Estimation of model uncertainty with a QD ensemble.

6.1. Discussion

Full results of PI quality metrics are given in table 1, NLL
& RMSE results are included in appendices. Given that
LossQD−soft is representative of PI quality, QD-Ens out-
performed MVE-Ens on all but one dataset. PICP was
generally closer to the 95% target, andMPIW was on aver-
age 11.6% narrower. The exception to this was the Kin8nm
dataset. In fact, this dataset was synthetic (Danafar et al.,
2010), and we suspect that Gaussian noise may have been
used in its simulation, which would explain the superior
performance of MVE-Ens.

One drawback of QD-Ens was the fragility of the training
process. Compared to MVE-Ens it required a lower learning
rate, more careful selection of decay rate, and hence from
two to ten times more training epochs.

Other comments are as follows. We found λ a convenient
lever providing some control over PICP . Bootstrap resam-
pling gave worse performance than parameter resampling,
which agrees with work discussed in 4 - we suspect it would
work give a much larger ensemble size. We tried to estab-
lish a relationship between the normality of residual errors
and improvement of QD-Ens over MVE-Ens, but due to the
variable power of normality tests analysis was unreliable.

7. Conclusions and Future Work
In this paper we derived a loss function for the output of PIs
based on the assumption that high-quality PIs should be as
narrow as possible subject to a given coverage proportion.
We contrasted it with a previous work, justifying differences
and showed that it can be used successfully with GD with
only slight modification. We described why a single NN
using the derived loss function underestimates uncertainty,
and that this can be addressed by using the model in an
ensemble. On ten benchmark regression datasets, the new
model reduced PI widths by over 10%.

Several areas are worth further investigation: Why parame-
ter resampling provides better performance than bootstrap
resampling, how model uncertainty could be estimated
through dropout or conformal prediction rather than ensem-
bling, and the role that NN architecture plays in ensembled
estimates of model uncertainty.

Acknowledgements
The authors thank EPSRC for the funding of the project, the
Alan Turing Institute for accommodating the lead author
during his work (TU/D/000016), and Microsoft for Azure
credits. Personal thanks to Mr Ayman Boustati, Mr Henry-
Louis de Kergorlay, and Mr Nicolas Anastassacos.

High-Quality Prediction Intervals for Deep Learning

References
Ak, Ronay, Li, Yan-fu, Vitelli, Valeria, and Zio, Enrico.

Multi-objective Genetic Algorithm Optimization of a
Neural Network for Estimating Wind Speed Prediction
Intervals. 2013a. URL https://hal.archives-
ouvertes.fr/hal-00864850/document.

Ak, Ronay, Li, Yanfu, Vitelli, Valeria, Zio, Enrico, López
Droguett, Enrique, and Magno Couto Jacinto, Carlos.
NSGA-II-trained neural network approach to the esti-
mation of prediction intervals of scale deposition rate
in oil & gas equipment. Expert Systems with Appli-
cations, 40(4):1205–1212, 2013b. ISSN 09574174.
doi: 10.1016/j.eswa.2012.08.018. URL http://
dx.doi.org/10.1016/j.eswa.2012.08.018.

Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Ko-
ray, and Wierstr, Daan. Weight Uncertainty in Neural
Networks. In Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37, 2015.

Danafar, Somayeh, Gretton, Arthur, and Schmidhuber,
Jürgen. Characteristic kernels on structured domains
excel in robotics and human action recognition. Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 6321 LNAI(PART 1):264–279, 2010. ISSN
03029743. doi: 10.1007/978-3-642-15880-3 23.

Gal, Yarin. Uncertainty in Deep Learning. PhD thesis,
2016.

Gal, Yarin and Ghahramani, Zoubin. Dropout as a Bayesian
Approximation: Representing Model Uncertainty in
Deep Learning. In Proceedings of the 33rd Interna-
tional Conference on Machine Learning, 2015. ISBN
1506.02142. doi: 10.1109/TKDE.2015.2507132. URL
http://arxiv.org/abs/1506.02142.

Galván, Inés M., Valls, José M., Cervantes, Alejandro, and
Aler, Ricardo. Multi-objective evolutionary optimization
of prediction intervals for solar energy forecasting with
neural networks. Information Sciences, 2017. ISSN
00200255. doi: 10.1016/j.ins.2017.08.039.

Goodfellow, Ian, Bengio, Yoshua, and Courville,
Aaron. Deep Learning. 2016. ISBN 3540620583,
9783540620587. doi: 10.1016/B978-0-12-391420-
0.09987-X. URL www.deeplearningbook.org.

Graves, Alex. Practical Variational Inference for
Neural Networks. Advances in Neural Informa-
tion Processing Systems, pp. 1–9, 2011. URL
https://papers.nips.cc/paper/4329-
practical-variational-inference-for-
neural-networks.pdf.

Hernández-Lobato, José Miguel and Adams, Ryan P.
Probabilistic Backpropagation for Scalable Learning of
Bayesian Neural Networks. In Proceedings of the 32nd
International Conference on Machine Learning, 2015.
ISBN 9781510810587.

Heskes, Tom. Practical confidence and predic-
tion intervals. In Advances in Neural Informa-
tion Processing Systems 9, 1996. URL https:
//papers.nips.cc/paper/1306-practical-
confidence-and-prediction-intervals.

Jones, Karl O. Comparison of Genetic Algorithm and
Particle Swarm Optimisation. International Confer-
ence on Computer Systems and Technologies - Comp-
SysTech’2005 COMPARISON, pp. 1–6, 2005.

Kennedy, J and Eberhart, R. Particle swarm optimiza-
tion. Neural Networks, 1995. Proceedings., IEEE Inter-
national Conference on, 4:1942–1948 vol.4, 1995. ISSN
19353812. doi: 10.1109/ICNN.1995.488968.

Kennedy, J and Eberhart, R. Swarm Intelligence.
2001. ISBN 978-3-540-74088-9. doi: 10.1007/978-3-
540-74089-6. URL http://link.springer.com/
10.1007/978-3-540-74089-6.

Khosravi, Abbas, Nahavandi, Saeid, Creighton, Doug,
and Atiya, Amir F. Lower upper bound estimation
method for construction of neural network-based pre-
diction intervals. IEEE Transactions on Neural Net-
works, 22(3):337–346, 2011a. ISSN 10459227. doi:
10.1109/TNN.2010.2096824.

Khosravi, Abbas, Nahavandi, Saeid, Creighton, Doug, and
Atiya, Amir F. A Comprehensive Review of Neural
Network-based Prediction Intervals and New Advances.
IEEE Transactions on Neural Networks, 22(9):1341–56,
2011b.

Krzywinski, Martin and Altman, Naomi. Points of Signifi-
cance. Nature Methods, 10(9-12), 2013. ISSN 15487091.
doi: 10.1038/nmeth.2659.

Lakshminarayanan, Balaji, Pritzel, Alexander, and Blundell,
Charles. Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles. In 31st Conference
on Neural Information Processing Systems, 2017.

Lee, Stefan, Purushwalkam, Senthil, Cogswell, Michael,
Crandall, David, and Batra, Dhruv. Why M Heads are
Better than One: Training a Diverse Ensemble of Deep
Networks. 2015. URL https://arxiv.org/abs/
1511.06314.

Lian, Cheng, Zeng, Zhigang, Member, Senior, Yao, Wei,
Tang, Huiming, Lung, Chun, and Chen, Philip. Land-
slide Displacement Prediction With Uncertainty Based on

https://hal.archives-ouvertes.fr/hal-00864850/document
https://hal.archives-ouvertes.fr/hal-00864850/document
http://dx.doi.org/10.1016/j.eswa.2012.08.018
http://dx.doi.org/10.1016/j.eswa.2012.08.018
http://arxiv.org/abs/1506.02142
www.deeplearningbook.org
https://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
https://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
https://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
https://papers.nips.cc/paper/1306-practical-confidence-and-prediction-intervals
https://papers.nips.cc/paper/1306-practical-confidence-and-prediction-intervals
https://papers.nips.cc/paper/1306-practical-confidence-and-prediction-intervals
http://link.springer.com/10.1007/978-3-540-74089-6
http://link.springer.com/10.1007/978-3-540-74089-6
https://arxiv.org/abs/1511.06314
https://arxiv.org/abs/1511.06314

High-Quality Prediction Intervals for Deep Learning

Neural Networks With Random Hidden Weights. IEEE
Transactions on Neural Networks and Learning Systems,
27(12):1–13, 2016.

MacKay, David J. C. A Practical Bayesian Frame-
work for Backpropagation Networks. Neural
Computation, 4(3):448–472, 1992. ISSN 0899-
7667. doi: 10.1162/neco.1992.4.3.448. URL
http://www.mitpressjournals.org/doi/
10.1162/neco.1992.4.3.448.

Mazloumi, Ehsan, Rose, Geoff, Currie, Graham, and Morid-
pour, Sara. Prediction intervals to account for uncer-
tainties in neural network predictions: Methodology and
application in bus travel time prediction. Engineering Ap-
plications of Artificial Intelligence, 2011. ISSN 09521976.
doi: 10.1016/j.engappai.2010.11.004.

Nix, D.A. and Weigend, A.S. Estimating the mean and vari-
ance of the target probability distribution. In Proceedings
of 1994 IEEE International Conference on Neural Net-
works (ICNN’94), pp. 55–60 vol.1, 1994. ISBN 0-7803-
1901-X. doi: 10.1109/ICNN.1994.374138. URL http:
//ieeexplore.ieee.org/document/374138/.

Papadopoulos, G, Edwards, P J, and Murray, A F. Confi-
dence Estimation Methods for Neural Networks: A Prac-
tical Comparison. In European Symposium on Artificial
Neural Networks, 2000.

Pinson, Pierre and Kariniotakis, George. Optimal Prediction
Intervals of Wind Power Generation. IEEE Transactions
on Power Systems, 25:1845–1856, 2013.

Quan, Hao, Srinivasan, Dipti, and Khosravi, Abbas. Un-
certainty handling using neural network-based predic-
tion intervals for electrical load forecasting. Energy,
73:916–925, 2014. ISSN 03605442. doi: 10.1016/
j.energy.2014.06.104. URL http://dx.doi.org/
10.1016/j.energy.2014.06.104.

Shafer, Glenn and Vovk, Vladimir. A tutorial on con-
formal prediction. Journal of Machine Learning Re-
search, 9:371–421, 2008. ISSN 1532-4435. URL
http://arxiv.org/abs/0706.3188.

Shen, Yanxia, Wang, Xu, and Chen, Jie. Wind Power
Forecasting Using Multi-Objective Evolutionary Algo-
rithms for Wavelet Neural Network-Optimized Predic-
tion Intervals. Applied Sciences, 8(2):185, 2018. ISSN
2076-3417. doi: 10.3390/app8020185. URL http:
//www.mdpi.com/2076-3417/8/2/185.

Sun, Xueying, Wang, Zhuo, and Hu, Jingtao. Prediction
Interval Construction for Byproduct Gas Flow Forecast-
ing Using Optimized Twin Extreme Learning Machine.
Mathematical Problems in Engineering, 2017, 2017.

Thomas, P, Mansot, JL, Delbe, K, Sauldubois, A, and
Bilas, P. Standard Particle Swarm Optimisation, 2012.
URL https://hal.archives-ouvertes.fr/
file/index/docid/926514/filename/
Delbe{ }9783.pdf.

Tibshirani, Robert. A Comparison of Some Error Estimates
for Neural Network Models. Neural Computation, 8:
152–163, 1996.

Wang, J, Fang, K, Pang, W, and Sun, J. Wind power in-
terval prediction based on improved PSO and BP neural
network. Journal of Electrical Engineering and Tech-
nology, 12(3):989–995, 2017. ISSN 19750102. doi:
10.5370/JEET.2017.12.3.989.

Yan, Lian, Verbel, David, and Saidi, Olivier. Predicting
prostate cancer recurrence via maximizing the concor-
dance index. In Proceedings of the 2004 ACM SIGKDD
international conference on Knowledge discovery and
data mining - KDD ’04, Seattle, Washington, 2004. ISBN
1581138889. doi: 10.1145/1014052.1014106.

A. Experimental details
In this section we give full experimental details of the work
described in the main paper. Code is made available online7.

A.1. Qualitative Experiments

A.1.1. TRAINING METHOD: PSO VS. GD

For the qualitative training method comparison (PSO vs.
GD), NNs used ReLU activations and 50 nodes in one hid-
den layer. GD was trained using LossQD−soft and run for
2,000 epochs, PSO was trained using LossQD and run for
50 particles over 2,000 iterations, parameters as given in
SPSO 2011 were followed (Thomas et al., 2012).

A.1.2. LOSS FUNCTION: QD VS. MVE

For the loss function comparison (MVE vs. QD) The NNs
used Tanh activations and 50 nodes in one hidden layer.
Both were trained with GD and results are for an individual
NN (not ensembled).

A.1.3. MODEL UNCERTAINTY ESTIMATION:
ENSEMBLES

For evaluation of ensembling, we sampled 50 points uni-
formly in the interval [−4,−1], and another 50 from [1, 4].
An ensemble of ten QD NNs using ReLU activations and
50 nodes in one hidden layer was trained with GD, using
parameter resampling.

7https://github.com/TeaPearce

http://www.mitpressjournals.org/doi/10.1162/neco.1992.4.3.448
http://www.mitpressjournals.org/doi/10.1162/neco.1992.4.3.448
http://ieeexplore.ieee.org/document/374138/
http://ieeexplore.ieee.org/document/374138/
http://dx.doi.org/10.1016/j.energy.2014.06.104
http://dx.doi.org/10.1016/j.energy.2014.06.104
http://arxiv.org/abs/0706.3188
http://www.mdpi.com/2076-3417/8/2/185
http://www.mdpi.com/2076-3417/8/2/185
https://hal.archives-ouvertes.fr/file/index/docid/926514/filename/Delbe{_}9783.pdf
https://hal.archives-ouvertes.fr/file/index/docid/926514/filename/Delbe{_}9783.pdf
https://hal.archives-ouvertes.fr/file/index/docid/926514/filename/Delbe{_}9783.pdf

High-Quality Prediction Intervals for Deep Learning

Table 2. RMSE and NLL on 10 benchmarking regression datasets; mean ± one standard error, best result in bold.

RMSE NLL
n D MVE-ENS QD-ENS MVE-ENS QD-ENS

BOSTON 506 13 2.84 ± 0.19 3.38 ± 0.26 2.60 ± 0.10 2.74 ± 0.14
CONCRETE 1,030 8 5.20 ± 0.10 5.76 ± 0.10 2.95 ± 0.04 3.10 ± 0.02
ENERGY 768 8 1.67 ± 0.05 2.30 ± 0.04 1.12 ± 0.05 1.62 ± 0.06
KIN8NM 8,192 8 0.08 ± 0.00 0.09 ± 0.00 -1.28 ± 0.01 -1.14 ± 0.01
NAVAL 11,934 16 0.00 ± 0.00 0.00 ± 0.00 -5.67 ± 0.03 -5.73 ± 0.03
POWER PLANT 9,568 4 3.94 ± 0.03 4.10 ± 0.03 2.77 ± 0.01 2.83 ± 0.01
PROTEIN 45,730 9 4.35 ± 0.02 4.98 ± 0.02 2.74 ± 0.02 3.12 ± 0.02
WINE 1,599 11 0.62 ± 0.01 0.65 ± 0.01 1.07 ± 0.06 1.15 ± 0.03
YACHT 308 6 1.36 ± 0.09 1.00 ± 0.08 1.02 ± 0.05 0.76 ± 0.07
SONG YEAR 515,345 90 8.88 ± NA 9.30 ± NA 3.37 ± NA 3.58 ± NA

A.2. Benchmarking Experiments

A.2.1. SET UP AND HYPERPARAMETERS

For the main results section, experiments were run across
ten open-access datasets, training/test folds randomly split
90%/10%, experiments repeated 20 times, NNs had 50 neu-
rons in one hidden layer with ReLU activations, input and
target variables were normalised to zero mean and unit vari-
ance. The two largest datasets, Protein and Song Year, had
100 neurons in one hidden layer, and were repeated five and
one times respectively.

The softening factor was constant for all datasets s = 160.0,
for the majority of the datasets λ = 15.0, but was changed
to 4.0 for naval, 40.0 for protein, 30.0 for wine, and 6.0 for
yacht. The Adam optimiser was used with batch sizes of
100. Five NNs were used in each ensemble, using parameter
resampling.

Initially we used Bayesian Optimisation for selection of
learning rate and decay rate, although after working with
several datasets we found it more efficient to use intuition
combined with random search.

A.2.2. NLL & RMSE RESULTS

In table 2 we report NLL & RMSE in unnormalised form
to be consistent with previous work. Note that in the main
results we found it more meaningful to leave MPIW in
normalised form so that comparisons could be made across
datasets.

To compute NLL & RMSE for QD-Ens, we used the mid-
point of the PIs as the point estimate to calculate RMSE.
We computed the equivalent Gaussian distribution of the
PIs by centering around this midpoint and using a stan-
dard deviation of YU − YL/3.98, which enabled NLL to be
computed. We emphasise that by doing this, we break the
distribution-free assumption of the PIs, and include these
purely for the purpose of consistency with previous work.
Unsurprisingly, NLL & RMSE metrics for QD-Ens are poor.

MVE-Ens results are in line with previously reported work
(Lakshminarayanan et al., 2017).

	Paper Cover Page Feb 2018
	deep_PIs_tp_csa[3]

